期刊文献+

局部学习半监督多类分类机 被引量:1

Local learning semi-supervised multi-class classifier
原文传递
导出
摘要 半监督多类分类问题是机器学习和模式识别领域中的一个研究热点,目前大多数多类分类算法是将问题分解成若干个二类分类问题来求解.提出两种类标号表示方法来避免多个二类分类问题的求解,一种是单位圆类标号表示方法,一种是二进制序列类标号表示方法,并利用局部学习在二类分类问题中的良好学习特性,提出基于局部学习的半监督多类分类机.实验结果证明采用了基于局部学习的半监督多类分类机错分率更小,稳定性更高. Semi-supervised multi-class classification problem opens research focuses in machine learning and pattern recognition, currently it is decomposed into a set of binary classification problems. Two kinds of class label presentation methods that one was class label presentation method of unit disc and the other was that of binary string were proposed for fear that multiple binary classification problems were solved. Besides, local learning has the good feature in semi-supervised binary classification problem. On the basis of it, local learning semi-supervised multi-class classifier was presented in this paper. The effectiveness of the algorithms was confirmed with experiments on benchmark datasets compared to other related algorithms.
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2013年第3期748-754,共7页 Systems Engineering-Theory & Practice
基金 国家自然科学基金重点项目(10831009) 国家自然科学基金(10971223 11071252 70921061) 重庆市教委科技项目(KJ120628) 重庆师范大学博士启动基金(12XLB030)
关键词 半监督分类 多类分类机 局部学习 二进制序列 单位圆 semi-supervised classification multi-class classifier local learning binary string unit disc
  • 相关文献

参考文献15

  • 1刘叶青,刘三阳,谷明涛.多项式光滑的半监督支持向量分类机[J].系统工程理论与实践,2009,29(7):113-118. 被引量:4
  • 2蒋少华,桂卫华,阳春华,唐朝晖.基于核主元分析与多支持向量机的监控诊断方法及其应用[J].系统工程理论与实践,2009,29(9):153-159. 被引量:13
  • 3Zhu X J. Semi-supervised learning literature survey[R]. Computer Sciences TR 1530, University of Wisconsin, 2008.
  • 4Chapelle O, Scholkopf B, Zien A. Semi-supervised learning[M]. Cambridge: MIT Press, 2006.
  • 5Blanchard G, Lee G, Scott C. Semi-supervised novelty detection[J]. Journal of Machine Learning Research, 2010, 11(11): 2973-3009.
  • 6Belkin M, Niyogi P, Sindhwani V. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples[J]. Journal of Machine Learning Research, 2006, 7(11): 2399-2434.
  • 7Joachims T. Transductive learning via spectral graph partitioning[C]// Proc 20th International Conference on Machine Learning, Morgan Kaufmann, 2003: 290-297.
  • 8Zhu X J, Ghahramni Z, Lafferty J. Semi-supervised learning using gaussian fields and harmonic functions[C]// Proc 20th International Conference on Machine Learning, Menlo Park: AAAI Press, 2003: 912-919.
  • 9Zhou D Y, Bousquet O, Lal T N, et al. Learning with local and global consistency[C]// Advances in Neural Information Processing Systems 16, Cambridge: MIT Press, 2004:321-328.
  • 10Wu M R, Scholkopf B. Transductive classification via local learning regularization[C]// Proc of the llth Inter- national Conf on Artificial Intelligence and Statistics, Cambridge: MIT Press, 2007: 624-631.

二级参考文献16

  • 1唐朝晖,桂卫华,吴敏,杨帆,王海清.密闭鼓风炉铅锌熔炼的统计过程监测系统设计[J].计算机与应用化学,2007,24(2):155-158. 被引量:7
  • 2于德介,陈淼峰,程军圣,杨宇.基于AR模型和支持向量机的转子系统故障诊断方法[J].系统工程理论与实践,2007,27(5):152-157. 被引量:11
  • 3刘爱伦,袁小艳,俞金寿.基于KPCA-SVC的复杂过程故障诊断[J].仪器仪表学报,2007,28(5):870-874. 被引量:16
  • 4Akbarvan F, Bishnoi P R. Fault diagnosis of multivariate systems using pattern recognition and multi-sensor data analysis technique[J]. Computers and Chemical Engineering, 2001, 25: 1313-1339.
  • 5Scholkopf B, Smola A, Miiller K R. Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural Computation, 1998, 10(5): 1299-1319.
  • 6Scholkopf B, Smola A, Muller K R. Kernel principal component analysis[C] // Advances in Kernel Methods- support Vector Learning, Cambridge MA: MIT Press, 1999: 327-352.
  • 7Lee J M, Yoo C K, et al. Nonlinear process monitoring using kernel principal component analysis[J]. Chemical Engineering Science, 2004, 59:223-234.
  • 8Cortes C, Vapnic V. Support vector networks[J]. Machine Learning, 1995, 20(1): 1 25.
  • 9Burges C J C. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998, 2(2): 1-48.
  • 10Vapnic V. Statistical Learning Theory[M]. New York: Wiley, 1998.

共引文献15

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部