期刊文献+

刚体航天器姿态跟踪系统的自适应积分滑模控制 被引量:13

Adaptive Integral Sliding Mode Control for Rigid Spacecraft Attitude Tracking
原文传递
导出
摘要 采用自适应滑模控制(ASMC)技术进行姿态跟踪系统设计时,切换增益的整定不需要外部干扰及惯量阵不确定性的上界信息。但现有自适应滑模控制方法存在过度适应问题,产生的切换增益远大于控制所需值。为解决该问题,在自适应滑模控制框架内开展了刚体航天器姿态跟踪控制研究。首先对切换增益自适应机制进行分析,揭示了造成过度适应问题的原因。然后利用积分滑模控制的全局滑模特点,消除了初始跟踪误差对自适应过程的影响,提出了一种自适应积分滑模姿态跟踪控制方法。理论分析和仿真结果表明该方法能够有效减小切换增益。 When the adaptive sliding mode control (ASMC) technique is utilized for attitude tracking system design, a prior knowledge of the upper bounds of external disturbances and inertia matrix uncertainty is not required for switching gain tuning. However, there may be over-adaptation in current ASMC design in that the generated switching gain is unnecessarily large with respect to the required value. To address such a problem, this paper considers the attitude tracking control of a rigid spacecraft in the framework of ASMC design and proposes an adaptive integral sliding mode control scheme. First, the underlying causes of over-adaptation are analyzed in detail. Then, the influence of initial tracking error on switching gain adaptation is eliminated by exploiting the global sliding mode feature of the integral sliding mode control. The switching gain reduction ability of the proposed strategy is verified by theoretical analysis and simulation results.
出处 《航空学报》 EI CAS CSCD 北大核心 2013年第3期620-628,共9页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(61104153) 国家"973"计划(2012CB720000)~~
关键词 姿态控制 自适应滑模 过度适应 抖振削弱 积分滑模 attitude control adaptive sliding mode over-adaptation chattering suppression integral sliding mode
  • 相关文献

参考文献19

  • 1Vadali S R. Variable structure control of spacecraft large- angle maneuvers. Journal of Guidance, Control, and Dy- namics, 1986, 9(3): 235- 239.
  • 2Lo S C, Chen Y P. Smooth sliding-mode control for space- craft attitude tracking maneuvers. Journal of Guidance, Control, and Dynamics, 1995, 18(6): 1345-1349.
  • 3Crassidis J L, Markley F L. Sliding mode control using modified Rodrigues parameters. Journal of Guidance, Control, and Dynamics, 1996, 19(6): 1381-1383.
  • 4Boskovic J D, Li S M, Mehra R K. Robust tracking con- trol design for spacecraft under control input saturation. Journal of Guidance, Control, and Dynamics, 2004, 27 (4): 627 -633.
  • 5Yoo D S, Chung M J. A variable structure control with simple adaptation laws for upper bounds on the norm of the uncertainties. IEEE Transactions on Automatic Con- trol, 1992, 37(6): 860-865.
  • 6Lin F J, Chiu S L, Shyu K K. Novel sliding mode control ler for synchronous motor drive. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(2) : 532-542.
  • 7Wai R J. Adaptive sliding-mode control for induction ser- vomotor drive, IEE Proceedings Electric Power Applica- tions, 2000, 147(6): 55:3-562.
  • 8Souder J S, Hedrick J K. Adaptive sliding mode control of air-fuel ratio in internal combustion engines. International Journal of Robust and Nonlinear Control, 2004, 14(6) 525-541.
  • 9Huang Y J, Kuo T C, Chang S H. Adaptive sliding-mode control for nonlinear systems with uncertain parameters. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2008, 38(2): 534-539.
  • 10Shahravi M, Kabganian M, Alasty A. Adaptive robust attitude control of a flexible spacecraft. International Jour- nal of Robust and Nonlinear Control, 2006, 16 (6) 287-302.

二级参考文献20

  • 1Tafazoli M. A study of on-orbit spacecraft failures [J]. Acta Astronautica, 2009, 64(2-3):195- 205.
  • 2Zhang Y M, Jiang J. Bibliographical review on reconfigurable fault-tolerant control systems[J]. Annual Reviews in Control, 2008, 32(2): 229- 252.
  • 3Lam Q M, Xin M. Robustness evaluation of theta D con- trol technique subject to reaction wheel failures[C] // AIAA Guidance, Navigation, and Control Conference. 2010:8302-8319.
  • 4Boskovic J D, Li S M, Mehra R K. Intelligent control of spacecraft in the presence of actuator failures[C] // Pro ceedings of the IEEE Conference on Decision and Control. 2002: 4472-4477.
  • 5Varma S, Kumar K D. Fault tolerant satellite attitude control using solar radiation pressure based on nonlinear adaptive sliding mode[J].Acta Astronautica, 2009, 66(3- 4) :486 -500.
  • 6de Ruiter A. A fault-tolerant magnetic spin stabilizing controller for the JC2Sat FF mission[J].Acta Astronautica, 2010, 68(1-2): 160- 171.
  • 7Roberts B A, Kruk J W, Ake T B, et al. Three-axis atti tude control with two reaction wheels and magnetic torquer bars[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit Providence. 2004: 1-8.
  • 8Jin J, No S, Ryoo C K. Fault tolerant control for satel- lites with four reaction wheels [J]. Control Engineering Practice, 2008, 16(10):1250-1258.
  • 9CaiW C, Liao X H, Song Y D. Indirect robust adaptive fault-tolerant control for attitude tracking of spacecraft[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(5):1456-1463.
  • 10Godard G, Kumar K D. Fault tolerant reconfigurable satellite formations using adaptive variable structure techniques[J]. Journal of Guidance, Control, and Dynamics 2010, 33(3):969 -984.

共引文献12

同被引文献97

引证文献13

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部