期刊文献+

XPS测量稀土氧化物薄膜禁带宽度的可行性研究 被引量:4

Study on the Feasibility of Measuring the Band Gap of Rare Earth Oxide Films by XPS
下载PDF
导出
摘要 采用射频磁控溅射法在石英衬底和Si衬底上分别生长了Er2O3,Tm2O3和Yb2O3三种稀土氧化物薄膜。分别利用光学方法和X射线光电子能谱测量法对以上三种稀土氧化物的禁带宽度进行了测量,并将测量结果进行了对比研究。采用光学方法测量的Er2O3,Tm2O3和Yb2O3的带隙分别是(6.3±0.1),(5.8±0.1)和(7.1±0.1)eV;而采用X射线光电子能谱法测量的这三种材料的禁带宽度分别为(6.2±0.2),(6.0±0.2)和(6.9±0.2)eV。两种测量结果的对比分析表明:在误差允许的范围内,利用X射线光电子能谱方法测量稀土氧化物的禁带宽度是可行的。 Three kinds of rare earth oxide films,i.e.Er2O3,Tm2O3 and Yb2O3 films were depo-sited on quartz substrates and Si substrates using the radio-frequency magnetron sputtering me-thod,respectively.The band gaps of the films were measured with the ultraviolet-visible spectrophotometry and X-ray photoelectron spectroscopy(XPS),and the results of which were researched comparatively.The band gaps of Er2O3,Tm2O3 and Yb2O3 measured with the ultraviolet spectrophotometry are(6.3±0.1),(5.8±0.1)and(7.1±0.1)eV,while the band gaps of the films for XPS measurements are(6.2±0.2),(6.0±0.2)and(6.9±0.2)eV,respectively.The comparison analysis of the two measurement results shows that using XPS to measure the band gap of the rare earth oxide film is feasible within the allowed error range.
出处 《微纳电子技术》 CAS 北大核心 2013年第3期190-193,198,共5页 Micronanoelectronic Technology
基金 国家自然科学基金资助项目(60806031 11004130)
关键词 高k栅介质薄膜 禁带宽度 X射线光电子能谱(XPS) 紫外-可见分光光度计 稀土氧化物薄膜 high-k dielectric film band gap X-ray photoelectron spectroscopy(XPS) ultraviolet-visible spectrophotometer rare earth oxide film
  • 相关文献

参考文献11

  • 1AFANAWEV V V, STESMANS A, CHEN F, et al. Internal photoemission of electrons and holes from (100) Si into HfO2 [J]. Applied Physics Letters, 2002, gl (6): 1053- 1055.
  • 2JI T, NIE T X, CUI J, et al. Temperature effects on the growth and electrical properties of Er203 films on Ge sub- strates [J]. Thin Solid Films, 2012, 520 (8): 3406- 3409.
  • 3WANG J J, FANG Z B, JI T, et al. Band offsets of epitaxial Tin2 03 high-k dielectric films on Si substrates by X ray photo- electron spectroscopy [J]. Applied Surface Science, 2012, 258 (16): 6107-6110.
  • 4ZHU Y Y, CHEN S, FANG Z B, et al. Superior electrical properties of crystalline Er203 films epitaxially grown on Si subslrates [J]. Applied Physics 1.etters, 2006, 88 (16): 1629119-1 - 162909 3.
  • 5I.AHA A, BUGIEI. E, WANG J X, et al. Effect of domain boundaries on the electrical properties of crystalline Gd203 thin film [J]. Applied Physics Letters, 2008, 93 (18) : 182907-1 - 1829O7 3.
  • 6ZHANG X Q, TU H 1., ZHAO H B. Band structure and elec tronic characteristics of cubic LazO3 gate dielectrics epitaxially grown on InP substrates [J]. Applied Physics I.etters, 2011, 99 (13): 132902-1-1329112-3.
  • 7KIRS('H P I), LI H J, SENZAKI Y, et al. Nucleation and growth study of atomic layer deposiled HfO2 gate dielectrics resuhing in im'0roved scaling and electron mobility [J]. Jour- nalof Applied Physics, 2006, 99 (2): 023508-1- 023508-8.
  • 8FANG Z B, ZHU Y Y, CHEN W. Structure and electrical characterization of amorphous ErSiO films deposited by RF magnetron sputtering on Si (001) [J]. Applied Physics: A, 21)11, 102 (3): 695-698,.
  • 9TAUC J, GRIC-OROVICI R, VANCU A. Optical properties and electronic structure ot" amorphous germanium [J]. Physica SlatusSotidi, 1966, 15 (2): 627-637.
  • 10CHAMBERS S A, HANG Y, Yu Z, et al. Band offset and structure of SrTiO:/Si (001) heterojunetions[J]. J Vac Sci Technol: A, 2001, 19 (3): 934-939.

二级参考文献22

  • 1Drevet C, Henauh M, Fulatier J. Oxygen electrode reaction on stabilized zirconia under high oxygen pressure ( up to 100 bar). Solid State lonics, 2000, 136/137(2) : 807.
  • 2Sridhar S, Stancovski V, Pal U B. Effect of oxygen-containing species on the impedance of the Pt/YSZ interface. Solid State Ionics, 1997, 100(1/2): 17.
  • 3Wang T, Novak R F, Sohis R E. A study of factors that influence zirconia/platinum interfacial impedance using equivalent circuit analysis. Sens Actuactors B, 2001, 77(1/2) : 132.
  • 4Badwal S P S, Ciacchi F T. Microstructure of Pt electrodes and its influence on the oxygen transfer kinetics. Solid State lonics, 1986, 18/19 : 1054.
  • 5Jaccoud A, Foti G, Wuthrich R, et al. Effect of microstructure on the electrochemical behavior of Pt/YSZ electrodes. Top Catal, 2007, 44 (3) : 409.
  • 6Yoon S P, Nam S W, Han J, et al. Effect of electrode microstructure on gas-phase diffusion in solid oxide fuel cells. Solid State lonics,. 2004, 166 ( 1/2 ) : 1.
  • 7Jaccoud A, Foti G, Comninellis C. Electrochemical investigation of platinum electrode in solid electrolyte cell. Electrochim Acta, 2006, 51(7) : 1264.
  • 8Sridhar S, Stancovski V, Pal U B. Transient and permanent effects of direct current on oxygen transfer across YSZ-electrode interface. J Electrochem Soc, 1997, 144(7) : 2479.
  • 9Schwandt C, Weppner W. Variation of the oxygen exchange rate of zirconia-based electrodes by electrochemical pretreatment. Solid State lonics, 1998, 112(3/4) : 229.
  • 10Badwal S P S, De Bruin H J, Franklin A D. Impedance spectroscopy of the Pt/Yttria doped ceria interface. Solid State Ionics, 1983, 9/10 : 973.

共引文献6

同被引文献314

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部