期刊文献+

感受野视觉特征整合模型及应用

Vision Integration Model of Receptive Field and Its Application
原文传递
导出
摘要 采用基本ICA模拟视觉感知机制对自然图像分解得到的图像基函数在空间排列上是混乱的,这与视觉生理机制相互矛盾。模拟视皮层感受野间的信息整合机制,建立了新的计算模型。针对基于内容的图像故障区域检测问题,提出了相应的高效率少样本检测算法。首先,以列车正常和故障图像序列作为训练数据,利用拓扑ICA方法学习图像基函数,由此得到的独立分量系数作为神经元响应,然后模拟同步振荡机制选择响应强烈的神经元,输出其对应的内容,最后通过自动对比实现图像故障区域的快速定位。实验结果表明,与传统方法相比较,引入视觉信息整合机制的新模型及其算法能够提高故障检测率。 The visual information in the brain is passed layer by layer. Almost all the visual signals from the retina go through the receptive field of the primary visual cortex (V1 area) and pass on to a more advanced visual cortex after processing. The receptive field of V1 is mainly responsible for extracting the image shape, direction, color and other information, with the spatial domain of locality, time and frequency domain direction and choice, as well as sparse response characteristics. From the view of natural image statistics, Independent Component Analysis (ICA) is one of the main methods to model early computational vision. However, the space arrangement of basic functions (independent components of natural image) decomposed by basic ICA is chaotic and their amplitudes are uncertainty. This decomposition result is contradicted with physiological mechanisms of vision. So, a new computational model is proposed to simulate two important mechanisms of vision which are visual cortex receptive field topology construct and synchronous oscillation among neuron group. To solve the problem of train image fault detection, a new algorithm was proposed based on above compute model. The experiment results show that, the new algorithm can increase fault detection rate effectively compared with traditional methods which absence of above two important mechanisms of vision.
出处 《科技导报》 CAS CSCD 北大核心 2013年第9期59-64,共6页 Science & Technology Review
基金 国家自然科学基金项目(60841004 60971110)
关键词 视觉信息整合 拓扑基函数 神经元响应 故障检测 visual information integrate topology basis function neuron response fault detection
  • 相关文献

参考文献12

  • 1Lin J, Luo S W. Real-time rail head surface defect detection: A geometrical approach [J]. IEEE International Symposium on Industrial Electronics, 2009, 8(5): 769-774.
  • 2Tomczak L. Image defect detection methods for visual inspection systems [J]. CAD Systems in Microelectronics, 2007, 24(20): 454-456.
  • 3Ribeiro M X. An association rule-based method to support medical imagediagnosis with efficiency[J]. IEEE Transactions on Multimedia, 2008, 10 (2): 277-285.
  • 4顾广华,崔冬.白细胞图像的自动分割算法[J].仪器仪表学报,2009,30(9):1874-1879. 被引量:15
  • 5孙炜,王耀南,徐航.基于自组织小波神经网络的磁共振图像分割方法[J].电子测量与仪器学报,2008,22(4):26-29. 被引量:5
  • 6吴秀永,徐科,徐金梧.基于Gabor小波和核保局投影算法的表面缺陷自动识别方法[J].自动化学报,2010,36(3):438-441. 被引量:21
  • 7Olshausen B A, Field D J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images[J]. Nature, 1996, 381: 607-609.
  • 8Graham D J, Chandler D M, Field D J. Can the theory of "whitening" explain the center-surround properties of retinal? [J]. Vision Research, 2006, 46(18): 2901-2913.
  • 9van Hateren J H, Schaaf A V. Independent component filters of natural images compared with simple cells in primary visual cortex [J]. Proceedings of the Royal Society B: Biological Sciences, 1998, 265 (1394): 359-366.
  • 10Eckhorn R, Reitboeck H J, Arndt M, et al. Feature linking via synchronization among distributed assemblies: Simulation of results from cat cortex[J]. Neural Computation, 1990, 2(3): 293-307.

二级参考文献31

  • 1李文峰,徐科,杨朝霖,高阳,周鹏.中厚板表面缺陷在线检测系统的分类器设计[J].钢铁,2006,41(4):47-50. 被引量:5
  • 2宋强,徐科,徐金梧.基于结构谱的中厚板表面缺陷识别方法[J].北京科技大学学报,2007,29(3):342-345. 被引量:7
  • 3WU H S, GIL J, BARBA J. Optimal segmentation of cell images[C]. IEEE Proceedings on Vision, Image and Signal Processing, 1998,145(1):50-56.
  • 4KUMAR R B, JOSEPH D K, SREENIVAS T V. Teager energy based blood cell segmentation[C]. In Proceedings 2002 14th International Conference on Digital Signal Processing, Santorini, Greece, 2002,2:619-622.
  • 5GUIMARAES L V, SUZIM A A, MAEDA J. A new automatic circular decomposition algorithm applied to blood cells image[C]. Proceedings of IEEE International Symposium on Bio-Informatics and Biomedical Engineering, Arlington VA USA New York, 2000:277-280.
  • 6WANG W X. Binary image segmentation of aggregates based on polygonal approximation and classification of concavities[D]. Patten Recognition, 1998,31(10): 1503-1524.
  • 7VfCTOR O R, JUAN I G L, NICOLaS S L,et al. An improved watershed algorithm based on efficient computation of shortest paths[D]. Pattern Recognition, 2007,40(3) 1078-1090.
  • 8YANG X D, LI H Q, ZHOU X B. Nuclei segmentation using marker-controlled water- shed, tracking using mean-shift, and kalman filter in time-lapse microscopy[D]. IEEE Tran. On Circuits and Systems, 2006, 5(11):2405-2414.
  • 9WANG S T, WANG M. A new detection algorithm based on fuzzy cellular neural networks for white blood cell detection[D]. IEEE Trans. On Information Technology in Biomedicine, 2006,10(1):5-10.
  • 10FANG Y, ZHENG C X, PAN C, et al. White blood cell image segmentation using on-line trained neural network[C]. Proceeding of the 2005 IEEE Engineering in Medicine and Biology 27th Annual conference Shanghai China, 2005:6476-6479.

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部