期刊文献+

Flash ROM的X微束辐照试验研究及失效机理分析

Analysis of the X-ray microbeam test result of the flash memories
下载PDF
导出
摘要 Flash ROM芯片的存储阵列和外围电路均具有较高的辐射易损性,辐射损伤模式多样。为对其辐射敏感电路进行定位和分析,本文采用X射线微束开展局部辐照试验研究。分别研究了存储阵列,译码电路以及电荷泵等不同电路模块所引起的失效表征,利用错误位的逻辑地址映射图,总结错误分布规律,结合相应电路结构对其失效机理进行分析。辐照存储阵列会导致规则分布的0→1翻转错误,而译码电路出错会导致1→0的错误,电荷泵电路退化则会导致器件擦除和写入功能的失效。微束辐照结果可以有效补充全芯片总剂量效应考核的不足,为器件的抗辐射加固提供有益的参考。 Background: The failure phenomenon is difficult to analyze for the flash memories when the whole chip is exposed to irradiation since both the memory array and the peripheral circuits might be degraded. Purpose: In order to detect the radiation susceptibility and corresponding phenomenon of the related circuits that included in the flash memories, the X-ray microbea^aa is used as the radiation source instead of 6~Co. Methods: The failure phenomenon is studied respectively when the memory array, decoder circuits, the charge pump circuits as well as the I/O circuits are exposed to radiation. The errors are mapped according to the logical address and the failure mechanism is analyzed based on the circuits. Results: Irradiated on the memory array will lead to regularly distributed 0→1 bit flips, while only 1→0 are found when the row decoder is under exposure. Degradation of the charge pump circuits would lead to the erase/program fimctional failure. Conclusions: The results suggest that the X-ray microbeam radiation test is a good method for detecting the radiation susceptibility of the integrated circuits that contains lots of circuit modules.
出处 《核技术》 CAS CSCD 北大核心 2013年第3期37-43,共7页 Nuclear Techniques
基金 国家自然科学基金项目(11175271)资助
关键词 X射线微束 FLASH ROM 局域总剂量 错误位图映射 Flash ROM, X-ray microbeam, Localized total dose, Error map
  • 相关文献

参考文献14

  • 1Nguyen Duc N, Patterson J D, Guertin S M. Radiation Tests on 2Gb NAND Flash Memories[J], IEEE Transactions on Nuclear Science, 2006, 53:121-126.
  • 2Cellere Giorgio, Paccagnella A, Visconti A. Total Ionizing Dose Effects in NOR and NAND Flash Memories[J], IEEE Transactions on Nuclear Science, 2007, 54:1066-1070.
  • 3Bagatin M, Cellere G, Gerardin S, et al. TID Sensitivity of NAND Flash Memory Building Blocks[J], IEEE Transactions on Nuclear Science, 2009, 56:1909-1914.
  • 4Schmidt H, Grurmann K, B Nickson, et al. TID Test of an 8-Gbit NAND FLash Memory[J], IEEE Transactions on Nuclear Science, 2009, 56:1937-1940.
  • 5Timothy R, Oldham F M. Effect of Radiation Exposure on the Endurance of Commercial naiad Flash Memory[J], IEEE Transactions on Nuclear Science, 2009, 3280-3284 Oldham T R, Chen D, Friendlich M, et al. Label in NSREC2011, Las Vegas, 2011.
  • 6Oldham T R, Chen D, Friendlich M, et al. Label in NSREC2011, Las Vegas, 2011.
  • 7Larcher L, Cellere G, Paccagnella A, et al. Data retention after heavy ion exposure of floating gate memories - analysis and simulation[J], IEEE Transactions on Nuclear Science, 2003, 50: 2176-2183,.
  • 8Oldham T R, Kim H. Effects of Heavy Ion Exposure on Nanocrystal Nonvolatile Memory[J]. IEEE Transactions on Nuclear Science, 2005, 52:39-42.
  • 9Irom F, Nguyen D N. Single Event Effect Characterization of High Density Commercial NAND and NOR Nonvolatile Flash Memories[J], IEEE Transactions on Nuclear Science, 2007, 54:2547-2553.
  • 10Bagatin M, Gerardin S, Cellere G, et al. Key Contributions to the Cross Section of NAND Flash Memories Irradiated With Heavy Ions[J]. IEEE Transactions on Nuclear Science, 2008, 55:3302-3308.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部