期刊文献+

基于非协调边界元法和涡方法的黏性流场研究 被引量:2

VISCOUS FLOW FIELD BASED ON DISCONTINUOUS BOUNDARY ELEMENT METHOD AND VORTEX METHOD
下载PDF
导出
摘要 基于非协调边界元方法和涡方法的联合应用,模拟了二维和三维黏性不可压缩流场.计算中利用离散涡元对漩涡的产生、凝聚和输送过程进行模拟,并将整体计算域分解为采用涡泡模拟的内部区域和用涡列模拟的数字边界层区域.计算域中涡量场的拉伸和对流由Lagrangian涡方法模拟,用随机走步模拟涡量场的扩散.内部区域涡元涡量场速度由广义Biot--Savart公式计算,势流场速度则采用非协调边界元方法计算.非协调边界元将所有节点均取在光滑边界处,从而避免了法向速度的不连续现象;而对于系数矩阵不对称的大型边界元方程组,引入了非常高效的预处理循环型广义极小残余(the generalized minimum residual,GMRES)迭代算法,使得边界元法的优势得到了充分发挥,同时,在内部涡元势流场计算中对近边界点采用了正则化算法,该算法将奇异积分转化为沿单元围道上一系列线积分,消除了势流计算中速度及速度梯度的奇异性.二维、三维流场算例证明了所用方法的正确性,也验证了该算法可以大幅度提高模拟精度和效率. The two-dimensional, three-dimensional viscosity and incompressible flow fields are simulated bases on a .combination application of discontinuous boundary element method and vortex method in our present study. Discrete vortex elements are used to analogue the vorticity generation, accumulation and transport mechanisms of the unsteady separated flow fields. And it decomposes the computing domain into an interior domain of vortex blobs and a thin nu- merical boundary layer of vortex sheets. The convection and stretch of the vortical field is imitated by Lagrangian vortex method, and the random walk method is adopted to describe the diffusion process of the vortical field. Additionally, vortex element's vortical velocity is calculated by generalized Biot-Savart law, while discontinuous boundary element method is used to compute potential velocity. To avoid the discontinuous of normal velocity, all nodes of discontinuous boundary element are selected at smooth boundary. Since a large scale boundary element equation set with a nonsymmetrical coef- ficient matrix should be solved, the present study import a pre-conditioning the generalized minimum residual (GMRES) iterative algorithm, which takes full advantage of the boundary element method. Moreover, regularization algorithm that applies at interior points close to the boundary, which the nearly singular surface integrals are transformed into a series of line integrals along the contour of the element, help to eliminate the unacceptable results of potential velocity and velocity gradient in potential calculation. The accuracy of present method is verified in both examples of two-dimension and three-dimension flow field calculation, as well as the significant increased simulation precision and efficiency.
出处 《力学学报》 EI CSCD 北大核心 2013年第2期202-213,共12页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家杰出青年科学基金(51125031) 江苏省普通高校研究生科研创新计划(CXLX-0130)资助项目~~
关键词 涡方法 非协调边界元方法 GMRES迭代算法 正则算法 黏性流场 vortex method, discontinuous boundary element method, GMRES iterative algorithm, regularization algo-rithm, viscous flow field
  • 相关文献

参考文献4

二级参考文献33

  • 1Liu Xingye Associate Professor, Department of Civil Engineering, Tianjin University, 300072 Tianjin.The Boundary Element Method for Pile-Soil Interaction[J].China Ocean Engineering,1992,7(3):317-330. 被引量:1
  • 2董春迎,谢志成,姚振汉,杜庆华.边界积分方程中超奇异积分的解法[J].力学进展,1995,25(3):424-429. 被引量:7
  • 3王有成,刘钊,吴约.边界元技术中的全特解场方法[J].力学学报,1995,27(4):451-458. 被引量:20
  • 4沈世钊,武岳.膜结构风振响应中的流固耦合效应研究进展[J].建筑科学与工程学报,2006,23(1):1-9. 被引量:34
  • 5Brebbia C A, TeUes J C, Wrobel LC. Boundary Element Techniques [ M ] . Berlin, Heidel-berg: Springer - Verlag, 1984.
  • 6Huang Q, Cruse T A. Some notes on singular integral techniques in boundary element analysis[J] . Int. J. Numer. Methods Engng.,1993,36 ( 3 ) : 2643-2659.
  • 7Tanaka M, Sladek V, Sladek J. Regularlzation techniques applied to BEM [ J ] . Appl. Mech.Rev. ,1994,47(10) :457-499.
  • 8Ghosh N, Rajiyah H, Ghosh S, Mukherjee S.A new boundary element method formulation for linear elasticity [J] . J. of Appl. Mech.,1986, 53( 1 ) :69-76.
  • 9Granados J J, Gallego R. Regularization of nearly hypersingular integrals in the boundary element method [ J ]. Engng. Anal. Boundary Elements, 2001,25 : 165-154.
  • 10Sladek V, Sladek J, Tanaka M. Optimal transformations of the integration variables in computation of singular integrals in BEM. Int J Numer Methods Eng, 2000, 47:1263~1283

共引文献28

同被引文献34

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部