期刊文献+

对REESSE1+公钥密码的明文恢复攻击

Plaintext Recovery Attack on REESSE1+ Public Key Cryptosystem
下载PDF
导出
摘要 文章提出对REESSE1+公钥密码实施明文恢复攻击的两种启发性方法。一是把解密看作一个群分解问题,求解该问题即可获得一个等价明文,当该等价明文向量的各个分量都很小时,则此等价明文很可能就是密文所对应的明文;二是如果能在有限域中求解离散对数,从密文恢复明文就转换为解一个低密度、低维数背包问题,运用格基规约算法可求解该背包问题。由于有限域中求解离散对数的计算复杂性是亚指数级的,故破译REESSE1+公钥密码的计算复杂性也是亚指数级的。 Two heuristic approaches to plaintext recovery attack on REESSE1+ public-key cryptosystem are proposed in this paper. First, the decryption of the cryptosystem can be viewed as a group factorization problem and the Solution to the problem gives rise to an equivalent plaintext, If all the entries of the equivalent plaintext vector are small enough, the equivalent plaintext is likely to be the plaintext corresponding to the ciphertext. Second, if discrete logarithm can be computed in finite field, recovering plaintext from ciphertext is translated into solving a knapsack problem with lower density and fewer number of dimensions, which can be broken by invoking the Lenstra-Lestra-Lovasz (LLL) algorithm. As the complexity of computing discrete logarithm in finite field is subexponential, the complexity of breaking REESSE 1+ public-key cryptosystem is also subexponential.
作者 费向东 潘郁
出处 《信息网络安全》 2013年第3期26-28,共3页 Netinfo Security
基金 江苏省软科学研究计划项目[BR2011057]
关键词 REESSE1+公钥密码 乘法背包 明文恢复攻击 群分解 离散对数 格基规约 REESSE1+ public key cryptosystem multiplication knapsack plaintext recovery attack group factorization problem discrete logarithm lattice reduction
  • 相关文献

参考文献12

  • 1苏盛辉.REESSE1+公钥密码体制的算法[J].中国科技论文,2006,6(3):208-211. 被引量:1
  • 2Shenghui Su, Shuwang Lu.The REESSEI+ Public Key Cryptosystem Version 2.2[EB/OL]. http://eprint.iacr.org/2006/420.pdf, 2012-07-25.
  • 3费向东,潘郁.安全背包公钥密码的要点和设计[J].信息网络安全,2012(9):81-84. 被引量:3
  • 4顾海华,谷大武,谢文录.REESSEl+公钥密码的安全性分析[EB/OL].http://www.paper.edu.cn,releasepaper/content/201111-131,2012-07-25.
  • 5Lenstra A K, Lenstra H W Jr, Lovaasz L. Factoring polynomials with rational coefficients[J1. Mathematische Annualen. 1982, 261: 513-534.
  • 6Naccache D and Stern J. A new public-key cryptosystem[C]. Advances in Cryptology. EUROCRYPT' 97, Berlin, Springer, 1997, LNCS 1233: 27-36.
  • 7王保仓,胡予濮.公钥密码Naccache-Stern的安全性分析[J].电子与信息学报,2007,29(10):2448-2450. 被引量:1
  • 8李作新,卢庆堂.大素数原根的算法[J].科学通报,1983,21(11):12R1-1294.
  • 9Coster M J, Joux A, LaMacchia B A, et al. Improved low-density subset sum algorithms [J]. Computational Complexity, 1992, 2(2): 111 - 128.
  • 10毕经国,韩立东,刘明洁.基于中国剩余定理的公钥加密算法的破解[J].北京工业大学学报,2012,38(5):768-772. 被引量:3

二级参考文献38

  • 1苏盛辉,杨炳儒.REESSE 2公开密钥密码体制[J].计算机科学,2004,31(9):148-151. 被引量:2
  • 2DIFFIE W,HELLMAN M.New directions in cryptography[J].IEEE Trans on Information Theory,1976,22(6):644-654.
  • 3RIVEST R,SHAMIR A,ADLEMAN L.A method forobtaining digital signatures and public-key cryptosystems[J].Communications of the ACM,1978,21(2):120-126.
  • 4ELGAMAL T.A public key cryptosystem and a signaturescheme based on discrete logarithms[J].IEEE Trans onInformation Theory,1985,31:469-472.
  • 5MERKLE R,HELLMAN M.Hiding information andsignatures in trapdoor knapsacks[J].IEEE Trans onInformation Theory,1978,24(5):525-530.
  • 6SHAMIR A.A polynomial time algorithm for breaking thebasic Merkle-Hellman cryptosystem[J].IEEE Trans onInformation Theory,1984,30(5):699-704.
  • 7CHOR B,RIVEST R L.A knapsack-type public keycryptosystem based on arithmetic in finite fields[J].IEEETrans on Information Theory,1988,34:901-909.
  • 8VAUDENAY S.Cryptanalysis of the Chor-Rivestcryptosystem[J].Journal of Cryptology,2001,14:87-100.
  • 9HOFFSTEIN J,PIPHER J,SILVERMAN J H.NTRU:aring-based public key cryptosystem[C] ∥Proceedings ofthe Third Algorithmic Number Theory.Portland,Oregon:Springer Verlag,1998:267-288.
  • 10COPPERSMITH D,SHAMIR A.Lattice attacks on NTRU[C] ∥Proceedings of EUROCRYPT 97.Konstanz,Germany:Springer Verlag,1997:52-61.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部