期刊文献+

Global attractor of 2D autonomous g-Navier-Stokes equations 被引量:4

Global attractor of 2D autonomous g-Navier-Stokes equations
下载PDF
导出
摘要 In this paper, the existence of global attractors for the 2D autonomous g- Navier-Stokes equations on multi-connected bounded domains is investigated under the general assumptions of boundaries. The estimation of the Hausdorff dimensions for global attractors is given. In this paper, the existence of global attractors for the 2D autonomous g- Navier-Stokes equations on multi-connected bounded domains is investigated under the general assumptions of boundaries. The estimation of the Hausdorff dimensions for global attractors is given.
机构地区 College of Computer
出处 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第3期385-394,共10页 应用数学和力学(英文版)
基金 Project supported by the National Natural Science Fundation of China (No. 11171269) the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2012JM1012) the Scientific Research Program Funded by Shaanxi Provincial Education Department (No. 12JK0849)
关键词 global attractor g-Navier-Stokes equation bounded absorbing set semi-group multi-connected bounded domain Hausdorff dimension global attractor, g-Navier-Stokes equation, bounded absorbing set, semi-group, multi-connected bounded domain, Hausdorff dimension
  • 相关文献

参考文献9

  • 1Rosa, R. The global attractor for the 2D-Navier-Stokes flow in some unbounded domain. Nonlinear Analysis, 32(1), 71-85 (1998).
  • 2Cheban, D. N. and Duan, J. Almost periodic solutions and global attractors of nonautonomous Navier-Stokes equation. Journal of Dynamics and Differential Equations, 16, 1-34 (2004).
  • 3Hou, Y. R. and Li, K. T. The uniform attractor for the 2D non-autonomous Navier-Stokes flow in some unbounded domain. Nonlinear Analysis, 58(5-6), 609-630 (2004).
  • 4Jiang, J. P. and Hou, Y. R. The global attractor of g-Navier-Stokes equations with linear dampness on ll(2. Appl. Math. Comput., 215, 1068-1076 (2009).
  • 5Bae, H. and Roh, J. Existence of solutions of the g-Navier-Stokes equations. Taiwan Residents Journal of Mathematics, 8(1), 85-102 (2004).
  • 6Roh, J. g-Navier-Stokes Equations, Ph.D. dissertation, University of Minnesota, Minnesota (2001).
  • 7Temam, R. Infinite-Dimensional Dynamical System in Mechanics and Physics, Springer-Verlag, New York (1988).
  • 8Roh, J. Dynamics of the g-Navier-Stokes equations. Journal of Differential Equations, 211, 452- 484 (2005).
  • 9Galdi, G. P. An Introduction to the Mathematical Theory of Navier-Stokes Equation, Springer- Verlag, New York (1994).

同被引文献5

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部