期刊文献+

一种新的视频缩放算法(英文)

A Novel Algorithm for Video Zooming
下载PDF
导出
摘要 基于量子力学新模型,提出一种新的实用的图像缩放算法,使得处理后的视频能有很好的图像质量。不同于量子力学中的一些模型,新方法将图像看做一个连续的能量场。此方法修改了传统的基数样条函数,并通过减少跨越图像物体边缘的采样来增加视觉的舒适度。该算法具有复杂度低和一致稳定的特点,特别适合用于嵌入式设备,如手机及PDA。 Inspired from the quantum mechanics, the authors propose a novel and practical video zooming algorithm which has a better image quality than other methods. Compared to the quantum mechanics models, an image is treated as a energy field and modify the traditional cardinal spline function. This method reduces the sample effect across the edges and improves the human pleasure. The proposed method has a low complexity, and keeps the coherence between frames for video sequence. It is especially suit for the embedded equipments such as mobile phones and PDAs.
出处 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第2期191-196,共6页 Acta Scientiarum Naturalium Universitatis Pekinensis
基金 北京市重大科技计划项目(D0306008040211)资助
关键词 视频缩放 插值 自适应 量子力学 video zooming interpolation adaptive quantum mechanics
  • 相关文献

参考文献11

  • 1Liu X, Zhao D, Xiong R, et al. Image interpolation via regularized local linear regression. IEEE Transactions on Image Processing, 2011, 20(12): 3455-3469.
  • 2Keys R G. Cubic convolution interpolation for digital image processing. IEEE Trans Acoust, Speech, Signal Process, 1981, 29(6): 1153-1160.
  • 3Hou H, Andrews H. Cubic splines for image interpolation and digital filtering. IEEE Trans Acoust, Speech, Signal Process, 1978, 26(6): 508-517.
  • 4Jensen K, Anastassiou D. Subpixel edge localization and the interpolation of still images. IEEE Trans Image Process, 1995, 4(3): 285-295.
  • 5Shi H, Ward R. Canny edge based image expansion// Proc IEEE lnt Symp Circuits Syst. Scottsdale, 2002: 785-788.
  • 6Battiato S, Stanco F. ALZ: Adaptive learning for zooming digital images // Proc IEEE lnt Conf Consumer Electron. Las Vegas, 2007:1-2.
  • 7Zhang L, Wu X. linage interpolation via directional filtering and data fusion. IEEE Trans Image Process, 2006, 15(8): 2226 2238.
  • 8Li X, Orchard M T. New edge-directed interpolation. IEEE Trans Image Process, 2001, 10(10): 1521-1527.
  • 9Schafer R W, Rabiner L R. A digital signal processing approach to interpolation. Proceedings of IEEE, 1973, 61:692-702.
  • 10Whittaker E T. On the functions which are representedby the expansions of the interpolation theory. Proc Roy Soc Edinburgh, 1915, 35:181-194.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部