摘要
针对动力学方程中含未知参数的多Euler-Lagrange系统的一致性控制问题,设计了一种分布式自适应协调控制器.该控制器容许多Euler-Lagrange系统的通信拓扑为一般的有向图,并允许通信时延和自时延的同时存在.利用Barblata定理、Lyapunov稳定性定理和LMI方法等对控制器的稳定性进行了证明,并设计了数值仿真实验,仿真结果证明了控制算法的有效性.
This paper deals with the consensus problem of networked Euler-Lagrange systems with unknown parameters.An adaptive controller is proposed which allows for the existence of input and communication delays under the directed communication topology.Barbalat’s Lemma,Lyapunov stability theorem and LMI methods are used to prove the stability of the proposed controller.Numerical simulation is also presented to demonstrate the effectiveness of the controller.
出处
《控制理论与应用》
EI
CAS
CSCD
北大核心
2013年第2期156-162,共7页
Control Theory & Applications
基金
国家自然科学基金资助项目(61203354)
关键词
自适应算法
一致性
自时延和通信时延
未知参数
adaptive algorithm
consensus
input and communication delays
uncertain parameters