期刊文献+

一种悬臂方形薄平板共振模态理论分析方法

A Theoretical Investigation of Resonant Model on Cantilever Thin Square Plate
下载PDF
导出
摘要 为了实现悬臂方形薄板的共振模态分析,本文基于AF-ESPI测量原理和瑞利利兹法对悬臂方形薄板共振模态的理论进行了完整分析,给出前8阶的共振频率和相对应悬臂方薄板的电子散斑共振条纹分布情况。为了验证理论计算的精确性,搭建了振幅波动电子散斑干涉测量系统,并利用该系统对悬臂方形薄板进行模态分析,测量该板的共振频率和振动模态。理论计算的结果和实验测量值对比发现,振动的条纹和理论计算的结果一致,共振频率的测量值和理论计算值之间的相对差值在0.1%~9.1%之间。 In order to analyze resonant model of the cantilever thin square plate, a theoretical interpretation of resonant vibration based on Rayleigh-Ritz method and amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI) is proposed. The resonant frequencies and deflection of the first eight orders are obtained. Based on this theory, we calculate the theoretical distribution of the speckled fringe pattern of the square thin cantilever plate. In order to verify the accuracy of theoretical expression and measure in experiment, AF-ESPI is employed to measure resonant frequency and mode shape of this cantilever square plate. The theoretical results are compared with the experimental measurement. Good agreement of vibration fringe patterns is obtained, and the relative errors of resonant frequencies between AF-ESPI and our method are 0.1%-9.1%.
出处 《光电工程》 CAS CSCD 北大核心 2013年第2期57-63,共7页 Opto-Electronic Engineering
基金 中俄(NSFC-RFBR)合作交流项目 天津市科技支撑重点项目(11ZCKFSF00400) 国家973课题(2010CB327806,2010CB327604)
关键词 相干光学 瑞利-利兹法 振幅波动电子散斑干涉术 悬臂方形薄板 挠度变形 coherence optics Rayleigh-Ritz AF-ESPI square cantilever thin plate deflection
  • 相关文献

参考文献15

  • 1QIU Zhicheng, WU Hongxin, YE Chunde. Acceleration sensors based modal identification and active vibration control of flexible smart cantilever plate [J]. Aerospace Science and Technology(S1270-9638), 2009, 13(6): 277-290.
  • 2LI W L. Vibration analysis of rectangular plates with general elastic boundary supports [J]. Journal of Sound and Vibration (SOO22-460X), 2004, 273(3): 619-635.
  • 3L1N M W, Abatan A O, Rogers C A. Application of commercial finite element codes for the analysis of induced strain-actuated structures [J]. ,I. Intell. Mater.Syst. Struet(S1045-389X), 1994, 5(6): 869-875.
  • 4Low K H, Chai G B, Lim T M, et al. Comparisons of experimental and theoretical frequencies for rectangular plates withvarious boundary conditions and added masses [J]. International Journal of Mechanical Sciences(S0020-7403), 1998, 40(11): 1119-1131.
  • 5HU X X. Vibration of angle-ply laminated plates with twist by Rayleigh-Ritz procedure [J]. Comput. Methods Appl. Mech. Engrg(S0045-7825), 2004, 193(9/11): 805-823.
  • 6Anthony B Stanbridge, Milena Martarelli, David J Ewins. Measuring area vibration mode shapes with a continuous-scan LDV [J]. Measurement(S0263-2241), 2004, 35(2): 181-189.
  • 7WANG W C, WANG C H, LIN S Y. Vibration measurement by the time-averaging electronic speckle pattern interferometry method [J]. Applied Optics(S0003-6935), 1996, 35(22): 4502-4509.
  • 8Romero G G, Alanis E E, Martinez C C. Vibration Analysis of Perforated Plates Using Time-Average Digital Speckle Pattern Interferometry [J]. ExperimentalMeehanies(S0014-4851), 2010, 50(7): 1013-1021.
  • 9林翠翠,刘文耀,王晋疆.电子错位散斑干涉系统中错位量的研究[J].光电工程,2012,39(3):88-93. 被引量:4
  • 10武锦辉,杨瑞峰,王高,赵毛太.用散斑干涉光谱分布检测瞬态温度[J].光电工程,2012,39(9):132-137. 被引量:3

二级参考文献23

  • 1李遂贤,廖宁放,孙雨南.一个评价光谱估计精度的新参数[J].光谱学与光谱分析,2007,27(8):1461-1464. 被引量:3
  • 2HUNG Y Y. Shearography for nondestructive evaluation of composite structures [J]. Optics and Lasers in Engineering (S0143-8166), 1996, 24(2/3): 161-182.
  • 3Steinchen W, Yang L X. Digital-shearography for Strain Measurement-an Analysis of the Measurement Errors [J]. Proceeding of SPIE(S0277-786X), 1998, 3479: 235-246.
  • 4Aebischer H A, Waldner S. A simple and effective method for filtering speckle-interferometric phase fringe patterns [J]. Opt. Commun(S0030-4018), 1999, 162: 205-210.
  • 5Ghiglia D C, Romero L A. Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods [J].J.Opt.Soe.Am.A(S1084-7529), 1994, 11(1): 107-117.
  • 6TANG Chen, ZHANG Fang, CHEN Zhan-qing. Contrast Enhancement for Electronic Speckle Pattern Interferometry Fringes by The Differential Equation Enhancement Method [J]. Applied Opties(S1559-128X), 2006, 45(10): 2287-2294.
  • 7LI Can-can, TANG Chen, YAN Hai-qing, et aL Localized Fourier Transform Filter for Noise Removal in Electronic Speckle Pattern Interferometry Wrapped Phase Patterns [J]. Applied Opties(S1559-128X), 2011, 50(24): 4903-4911.
  • 8David I Farrant, Guillermo H Kaufmarm, Jon N Petzing, et aL Measurement of Transient Deformations With Dual-Pulse Addition Electronic Speckle-Pattern Interferometry [J]. Applied Optics(S 1559-128X), 1998, 37(31): 7259-7267.
  • 9Pablo D Ruiz, Jonathan M Huntley, Ricky D Wildman. Depth-resolved Whole-field Displacement Measurement by Wavelength-scanning Electronic Speckle Pattern Interferometry [J]. Applied Opties(S 1559-128X), 2005, 44(19): 3945-3953.
  • 10Tajik N, Soltani N, Sedighiani K. Fracture Parameter Analysis on A Double Edge Crack Problem by the Method of Electronic Speckle Pattern Interferometry [C]//llth International Conference on the Meehanieal Behavior of Materials (ICMll), Milano, Italy, June5-9, 2011, 10: 3267-3272.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部