期刊文献+

基于贝叶斯信息更新的风险规避库存策略研究 被引量:2

Risk aversion in inventory management with Bayesian information updating
下载PDF
导出
摘要 在贝叶斯库存控制研究中一个著名的结论是:当缺货需求不能被观测到时,最优贝叶斯库存水平总会高于短视策略库存水平,原因是决策者需要通过多订货来获取对需求分布的认识.这是基于风险中性的研究,然后现实中决策者都期望规避风险.基于贝叶斯信息更新研究了风险规避背景下需求部分可观测的多周期报童问题,决策者的周期内效用函数满足独立可加性公理.通过引入非正规化概率,研究发现,对风险规避的决策者,当其效用函数具有不变绝对风险规避特征时,最优贝叶斯库存水平也会高于短视策略库存水平.非正规化概率简化了动态规划方程与结果的证明. A well-known result in the Bayesian inventory management research is: if lost sales are not observed, the Bayesian optimal inventory level is larger than the myopic inventory level. The underlying reason behind the fact is that the decision maker needs to stock more to learn about the demand distribution. These researches are based on the assumption that the decision maker is risk neutral. However, in reality, different decision makers often have different degree of risk aversion. In this paper, a multi-period newsvendor problem with risk aversion and partially observed demand is considered. The decision maker uses the Bayesian rule to update the information of the demand distribution, and the utility is characterized by the sum of the intraperiod utility functions which satisfy the additive independence axiom. Our research, by using the interesting concept of unnormalized probability, shows that as the decision maker is risk averse and the utility function is the negative exponential function with a constant coefficient of absolute risk aversion, the Bayesian optimal inventory level is also larger than the myopic inventory level. The unnormalized probability greatly simplifies the dynamic programming equation and facilitates the technical proof of the result.
作者 罗春林
出处 《运筹学学报》 CSCD 北大核心 2013年第1期59-68,共10页 Operations Research Transactions
基金 国家自然科学基金(Nos.71261006 70901036 70961001) 江西省教育厅科技项目(No.GJJ10429)
关键词 贝叶斯信息更新 风险规避 库存 非正规化概率 Bayesian information updating, risk averse, inventory, unnormalizedprobability
  • 相关文献

参考文献16

  • 1Scarf H E. Bayes solution of the statistical inventory problem[J]. Annals of Mathematical S- tatistics, 1959, 30(2): 490-508.
  • 2Azoury K S, Miller B L. A comparison of the optimal ordering levels of Bayesian and non- Bayesian inventory model [J]. Management Science, 1984, 30(8): 993-1003.
  • 3Harpaz G, Lee W Y, Winkler R L. Learning, experimentation, and the optimal output decisions of a competitive firm[J]. Management Science, 1982, 28(6): 589-603.
  • 4Lariviere M A, Porteus E L. Stalking information: Bayesian inventory management with un- observed lost sales[J]. Management Science, 1999, 45(3): 346-363.
  • 5Ding X, Puterman M L Bisi A. The censored newsvendor and the optimal acquisition of information[J]. Operations Research, 2002, 50(3): 517-527.
  • 6Lu X, Song J S, Zhu K. The censored newsvendor and the optimal acquisition of information[J]. Operations Research, 2005, 53(6): 1024-1026.
  • 7Lu X, Song J S, Zhu K. Analysis of perishable inventory systems with censored demand data[J]. Operations Research, 2008, 56(4): 1034-1038.
  • 8Bensoussan A, Cakanyildirim M, Sethi S P. Censored newsvendor model revisited with un- normalized probability[J]. Journal of Industrial and Management Optimization, 2009, 5(2): 391-402.
  • 9Bensoussan A, Cakanyildirim M, Sethi S P. A note on "The censored newsvendor and the optimal of information" [J]. Operations Research, 2009, 57(3): 791-794.
  • 10Chen L, Plambeck E L. Dynamic inventory management with learning about the demand distribution and substitution probability[J]. Manufacturing Service Operations Management, 2008, 10(2): 236-256.

同被引文献8

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部