期刊文献+

鲁棒信用风险优化的线性锥优化模型(英文)

Linear conic optimization models for robust credit risk optimization
下载PDF
导出
摘要 考虑了具有强健性的信用风险优化问题.根据最差条件在值风险度量信用风险的方法,建立了信用风险优化问题的模型.由于信用风险的损失分布存在不确定性,考虑了两类不确定性区间,即箱子型区间和椭球型区间.把具有强健性的信用风险优化问题分别转化成线性规划问题和二阶锥规划问题.最后,通过一个信用风险问题的例子来说明此模型的有效性. In this paper we deal with the credit risk optimization problem. We present a model based on the worst-case Conditional Value-at-Risk (CVaR) risk measure and the uncertainty for the credit risk loss distribution. Under the box uncertainty, we reformulate the model into a linear optimization problem. Furthermore, under the ellipsoidal uncertainty, we reformulate the model into a seconde-order cone optimization problem. Finally, we show a numericM example to demonstrate the effective of our models.
机构地区 上海大学数学系
出处 《运筹学学报》 CSCD 北大核心 2013年第1期86-97,共12页 Operations Research Transactions
基金 Supported by the Foundation of National Natural Science Foundation of China(No.11071158) Key Disciplines of Shanghai Municipality(No.S30104)
关键词 信用风险优化 最差在值风险 线性优化 二阶锥优化 credit risk optimization, worst-case CVaR, linear optimization, secondorder cone optimization
  • 相关文献

参考文献16

  • 1Ghaoui L, Oustry F. Worst-case Value-at-Risk and robust portfolio optimization: A conic programming approach [J]. Operations Research, 2003, 51: 543-556.
  • 2Markowitz H M. Portfolio selection [J]. Journal of Finance, 1952, 7: 7791.
  • 3Rockafellar R T, Uryasev S. Optimization of conditional Value-at-Risk [J]. Journal of Risk, 2000, 2: 21-41.
  • 4Lobo M, Fazel M, Boyd S. Portfolio optimization with linear and fixed transaction costs [J] Annals of Operations Research, 2007, 152(1): 376-394.
  • 5Artzner P, Delbaen F, Eber J M, et al. Coherence measuresof risk [J]. Mathematical Finance, 1999, 9: 203-228.
  • 6Lobo M S, Vandenberghe L, Boyd S. Applications of second-order cone programming [J]. Linear Algebra and its Applications, 1998, 284: 193-228.
  • 7Pflug G. Some remarks on the Value-at-Risk and conditional Value-at-Risk [M]//Proba-bilistic Constrained Optimization: Methodology and Applications, Dordrecht: Ed. S. Uryasev, Kluwer Academic Publishers, 2002.
  • 8Rockafellar R T, Uryasev S. Conditional Value-at-Risk for general loss distributions [J]. Journal of Banking and Finance, 2002, 26: 1443-1471.
  • 9Andersson F, Mausser H. Credit risk optimization with Conditional Value-at-Risk criterion [J]. Math.Program, 2001, 89: 273-291.
  • 10Saunders D, Xiouros C. Credit risk optimization using factor models [J]. Ann Oper Res, 2007, 152: 49-77,.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部