期刊文献+

基于经典Goppa码的非对称量子稳定子码构造 被引量:1

Constructions of asymmetric quantum stabilizer codes based on classical Goppa codes
原文传递
导出
摘要 自从Calderbank等人建立了从经典纠错码构造量子纠错码的CRSS构造法以来,人们利用经典纠错码构造了大量的性能良好的量子纠错码,称为量子稳定子码.最近的物理实验表明,大多数量子力学系统中发生量子比特翻转错误的概率远小于量子相位翻转错误的概率,针对这一情况所构造的纠错码称为非对称量子纠错码.本文分别基于嵌套包含Goppa码与对偶包含Goppa码构造了一系列新的非对称量子稳定子码.在基于嵌套包含Goppa码构造非对称量子码时,首先对Goppa码的选取做一定的限制,以便解析构造量子码.对于一般情况下的构造,则是借助于数学软件Matlab计算Goppa码对偶码的最小距离进行的.在基于对偶包含Goppa码的构造中,所构造量子码的纠错能力主要体现在纠正Z类型错误上. Since Calderbank et al. established CRSS construction, which constructs quantum error-correcting codes (QECC) from classical error-correcting codes, many QECC demonstrating good performance have been constructed h-om classical error-correcting codes; these codes are referred to as quantum stabilizer codes. Recent physical experiments indicate that the probabilities of occurrence of qubit-fiip errors are much less than those of phase-flip errors in most quantum mechanical systems. Error-correcting codes thus constructed are referred to as asymmetric quantum codes. In this paper, series of asymmetric quantum stabilizer codes are constructed using nested Goppa codes and dual contained Goppa codes. In the construction of a.symmetric quantum codes based on nested Goppa codes, the choice of Goppa codes is limited to construct codes with analysis methods. In nornml circmnstances, the construction is executed with the help of mathematical software Matlab, which is used to compute the mininmm distance of Goppa codes. In the construction of asynlmetric quantum codes based on dual contained Goppa codes, the error correction ability of the codes constructed in this paper is reflected in the correction of Z-type errors.
出处 《中国科学:信息科学》 CSCD 2013年第3期407-417,共11页 Scientia Sinica(Informationis)
基金 国家自然科学基金(批准号:60873101 61170321) 高等学校博士学科点专项科研基金(批准号:20110092110024) 江苏省自然科学基金(批准号:BK2008209) 东南大学计算机网络和信息集成教育部重点实验室开放基金资助项目
关键词 CRSS构造法 量子纠错码 量子稳定子码 非对称量子码 Goppa码 CRSS construction, quantum error correcting code, quantum stabilizer codes, asymmetric quantumcodes, Goppa codes
  • 相关文献

参考文献1

  • 1LIU Tailin1,2,3, WEN Qiaoyan1 & LIU Zihui4 1. School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China,2. State Key Laboratory of Integrated Services Network, Xidian University, Xi’an 710071,China,3. Shandong Finance Institute, Jinan 250014, China,4. School of Mathematical Sciences, Peking University, Beijing 100871, China.Construction of nonbinary quantum cyclic codes by using graph method[J].Science in China(Series F),2005,48(6):693-702. 被引量:8

二级参考文献11

  • 1[1]Wootters, W. K., Zurek, W. H., A single quantum cannot be cloned, Nature, 1982, 299: 802-803.
  • 2[2]Shor, P. W., Scheme for reducing decoherence in quantum memory, Phys. Rev. A, 1995, 52: 2493.
  • 3[3]Steane, A. M., Multiple particle interference and quantum error correction, Proc. Roy. Soc. London A, 1996, 452:2551-2557.
  • 4[4]Calderbank, A. R., Rains, E. M., Shor, P. W. et al., Quantum error correction via codes over GF(4), IEEE Trans. Inform. Theory, 1998, 44(7): 1369-1387.
  • 5[5]Ashikhim, A., Knill, E., Non-binary quantum stabilizer codes, IEEE Trans. Inform. Theory, 2001, 47(11): 3065-3072.
  • 6[6]Matsumoto, R., Uyematsu, T., Constructing quantum error-correcting codes for pm-state sysetems from classical error-correcting codes, 1999, quant-ph/9911011.
  • 7[7]Rains, E. M., Nonbinary quantum codes, IEEE Trans. Inform. Theory, 1999, 45(9): 1827-1832.
  • 8[8]Schlingemann, D., Wemer, R. F., Quantum error-correcting codes associated with graphs, Phys. Rev. A, 2001, 65: No. 012308. quant-ph/0012111.
  • 9[9]Feng, K. Q., Quantum Codes [[6, 2, 3]]p and [[7, 3, 3]]p(p ≥ 3) Exist, IEEE Trans. Inform. Theory, 2002, 48(8):2384-2391.
  • 10[10]Knill, E., Laflamme, R., A theory of quantum error-correcting codes, Phys. Rev. A, 1997, 55: 900-911.

共引文献7

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部