期刊文献+

非自治强阻尼梁方程的渐近行为 被引量:6

Asymptotic Behavior for Non-autonomous Strongly Damped Beam Equation
下载PDF
导出
摘要 研究了具有与时间相关的外力驱动的非自治强阻尼梁方程的渐近行为。当与时间有关的外力是平移紧的时候,首先利用算子半群理论证明了在一定的齐次边界条件和初值条件下系统存在连续解;再通过先验估计,构造了渐近紧的不变吸收集;最后证明了系统存在一致吸引子。 This paper presents the asymptotic behavior of solutions for the non autonomous strongly damped beam equation. When the time-dependent driving force is translation compact, the existence of the continuous solutions is proved according to the operator semigroups theory under certain homogeneous boundary conditions and initial conditions. By prior estimates, we construct the compact invariant sets. And the uniform attractor is obtained.
出处 《太原理工大学学报》 CAS 北大核心 2013年第1期116-118,共3页 Journal of Taiyuan University of Technology
基金 国家自然科学基金资助项目(11172194) 山西省自然科学基金资助项目(2010011008) 太原理工大学校基金资助项目(900103-03020715)
关键词 非自治 强阻尼 梁方程 不变吸收集 一致吸引子 non-autonomous strongly damped beam equation invariant sets uniform attractor
  • 相关文献

参考文献6

  • 1陈双全,周盛凡,李红艳.黏弹性和热黏弹性方程的全局吸引子[J].应用数学与计算数学学报,2008,22(1):14-20. 被引量:3
  • 2姜金平,侯延仁,王小霞.含线性阻尼的2D非自治g-Navier-Stokes方程的拉回吸引子[J].应用数学和力学,2011,32(2):144-157. 被引量:5
  • 3Song Xueli, Hou Yanren. Attractors for the three-dimensional incompressible Navier Stokes equations with damping[J]. Discrete and Continuous Dynamical Systems, 2011, 31(1) 239-252.
  • 4Simsen Jacson, Simsen Mariza Stefanello. Existence and upper semicontinuity of global attractors for p(a)-Laplacian systems [J]. J Math AnalAppl, 2012,388(1): 23-38.
  • 5Wan Li, Zhou Qinghua. Attractor and boundedness for stochastic Cohen-Grossberg neural networks with delaysJ. Neuro- computing, 2012, 79: 164-167.
  • 6Temam R. Infinite Dimensional Dynamical Systems in Mechanics and Physics [M]. New York: Springer, 1988.

二级参考文献31

  • 1Roh J. g-Navier-Stokes equations[ D]. Ph D Dissertation. Minnesota: University of Minnesota, 2001.
  • 2Roh J. Dynamics of the g-Navier-Stokes equations[ J]. J Differential Equations, 2005, 211 (2) :452-484.
  • 3JIANG Jin-ping, HOU Yan-ren. The global attractor of g-Navier-Stokes equations with linear dampness on R2 [ J ]. Appl Math Comput, 2009, 215 (3) : 1068-1075.
  • 4Kwak M, Kwean H, Roh J. The dimension of attractor of the 2D g-Navier-Stokes equations [J]. JMath Anal Appl, 2005, 315(2) :435-451.
  • 5Babin A V, Vishik M I. Attractors of partial differential equations in an unbounded domain [ J]. Proc Roy Soc Edinburgh Sect A, 1990, 116:221-243.
  • 6Constantin P, Foias C, Temam R. Attractor Representing Turbulent Flows[ M]. Mem Amer Math Soc, 1985, 53(314) :1-67.
  • 7Rosa R. The global attractor for the 2D-Navier-Stokes flow in some unbounded domain[ J]. Nonlinear Analysis, Theory, Methods and Applications, 1998, 32( 1 ) :71-85.
  • 8Cheban D N, Duan J. Almost periodic solutions and global attractors of nonautonomous Navier-Stokes equation[ J]. J Dyn Differ Equation, 2004, 16( 1 ) : 1-34.
  • 9Cheban D N. Global Attractors of Non-Autonomous Dissipative Dynamical Systems [ M ]. Singapore : World Scientific, 2004.
  • 10Zhong C K, Yang M H, Sun C Y. The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations [ J ]. J Diff Eqns, 2005, 223(2) :357-399.

共引文献6

同被引文献14

引证文献6

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部