期刊文献+

红外与可见光图像自相似性特征的描述与匹配 被引量:7

Description and matching of self-similarities for IR and visual images
下载PDF
导出
摘要 针对红外与可见光图像匹配的难题,提出了一种基于自相似性的异源图像点特征匹配算法。首先对红外与可见光图像进行小邻域平方和计算;再通过构造高斯金字塔,运用FAST-9进行角点检测,使得检测的特征点具有尺度属性;然后,统计特征点邻域的特征信息以确定特征点的主方向;再求取在相应尺度下特征点邻域的相关平面,对相关平面进行区域划分,提取每个区域相关平面的极值以构造100维的自相似性描述子,并对描述子进行归一化处理;而后,剔除不良特征描述子;最后采用最近邻匹配算法进行特征匹配。实验结果表明,提出的算法能够实现红外与可见光图像在视角、旋转、尺度变换下的有效匹配;在保证运算速度的前提下,提出的算法较SIFT算法在正确匹配率方面有明显提高。 A point matching algorithm based on self-similarities is proposed to solve the difficulty of IR and visible im- ages matching. Firstly,sums of square in small neighborhoods are calculated. Secondly,by introducing Gaussian scale space, feature points are extracted by FAST-9 corner detector which has scale-invariance. And the main orientation for each point is assigned according to the neighborhood information. Thirdly, correlation surfaces with corresponding scale are chosen for region. Extreme value of each correlation surface is extracted to construct a normalized descriptor with 100 dimensions. Finally ,the nearest neighbor algorithm is used to match control points after eliminating non-informa- tive descriptors. Experimental results indicate that the proposed method is robust to changes in rotation change, affine change and scale change. Meanwhile, it gets a higher correct ratio than SIFT.
出处 《激光与红外》 CAS CSCD 北大核心 2013年第3期339-343,共5页 Laser & Infrared
基金 国家自然科学基金项目(No.61075025 61175120)资助
关键词 可见光图像 红外图像 自相似性 多尺度 图像匹配 visual image infrared image self-similarity multi-scale image matching
  • 相关文献

参考文献11

  • 1Elizabeth A S. Matching methods for causal inference:A review and a look forward[J]. Pub Med Central,2010,25 (1) :1 -21.
  • 2Stephen J C,Richard D T, Rade D P. Dental color matching instruments and systems. Review of clinical and research as- pects[J]. Journal of Dentistry,2010,38(2) :2 -16.
  • 3Watson B, Yeo L, Friend 1. A study on axial and torsional resonant mode matching for a mechanical system with complex non-linear geometries [ J ]. Review of Scientific Instruments,2010,81 (6) : 1 - 9.
  • 4Lowe D. Distinctive image features from scale-invariant keypointsl J ]. International Journal of Computer Vision, 2004,60(2) :91 - 110.
  • 5Ojala T P, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns [ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence ,2002,24(7 ) :971 - 987.
  • 6Bay H,Tuytelaars T, Van Gool L. SURF:Speeded up ro- bust features[ C ]//Proceedings of the 9th European Con- ference on Computer Vision, Graz, Austria, ECCV, 2006 : 404 -417.
  • 7E Shechtman, M Irani. Matching local self-similarities across images and videos [ C ]//Proceedings of the Confer- ence on Computer Vision and Pattern Recognition, Weiz- mann, IEEE ,2007 : 1 - 8.
  • 8Ken C,James P, Andrew Z. Efficient retrieval of deform- able shape classes using local self-similarities [ C ]//Pro- ceedings of the 12th International Conference on Computer Vision Workshops, Oxford, 1EEE,2009 : 264 - 271.
  • 9Selen A, et al. Wave interference for pattern description [J]. Lecture Notes in Computer Science, 2011,6493: 41 -54.
  • 10Rosten E, Drummond T. Machine learning for high-speed corner detection [ J ]. Proceedings of the European Confer- ence on Computer Vision,2006:430 -443.

同被引文献346

  • 1余萍,董保国.基于SIFT特征匹配的电力设备图像变化参数识别[J].中国电力,2012,45(11):60-64. 被引量:6
  • 2仲莉恩,冯辉,隋立林.一种利用边缘方向直方图检测绝缘子的方法[J].电气技术,2010,11(1):22-25. 被引量:16
  • 3ZITOVA B, FLUSSER J. Image registration methods: a survey [J]. Image and Vision Computing, 2003, 21(11): 977-1000.
  • 4AGUILAR W, FRAUEL Y, ESCOLANO F, et al. A robust graph transformation matching for non-rigid registration [J]. Image and Vision Computing, 2009, 27(7): 897-910.
  • 5LIU Zhaoxia, AN Jubai, JING Yu. A simple robust feature point matching algorithm based on restricted spatial order constraints for aerial image registration [J]. IEEE Transactions on Geosciences and Remote Sensing, 2011, 8(4): 805-841.
  • 6XIONG Zhen, ZHANG Yun. A novel interest-point-matching algorithm for high-resolution satellite images [J]. IEEE Transactions on Geosciences and Remote Sensing, 2009, 47(12): 4189-4200.
  • 7ALAJLAN N, RUBE I E, KAMEL M S, et al. Shape retrieval using triangle-area representation and dynamic space warping [J]. Pattern Recognition, 2007, 40(7): 1911-1920.
  • 8DELORME A, PERRINET L, THORPE S J. Networks of integrate-and-fire neurons using rank order coding B: spike timing dependent plasticity and emergence of orientation selectivity [J]. Neuroncomputing, 2001, 38(40): 539-545.
  • 9VANRULLEN R, THORPE S J. Surfing a spike wave down the ventral stream [J]. Vision Research, 2002, 42(23): 2593-2615.
  • 10Lowe D G. Distinctive image features from scale-invariant keypoints [ J ]. International Journal of Computer Vision, 2004,60(2) :91 - 110.

引证文献7

二级引证文献95

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部