期刊文献+

体外震波碎石系统的信息优化技术研究

Study on information optimization technology of ESWL system
原文传递
导出
摘要 目前针对体外震波碎石(ESWL)系统的研究主要集中在能量发射的研究,而对信息的优化采集研究较少.为了达到既碎裂结石又不损害人体组织的目的,如何高效地采集碎石影像数据成为一个重要的研究课题.提出的策略在医疗活动信息化的基础上,根据影像像素分布情况,利用自适应选择子,自动选择不同小波所对应的提升方案对数据进行分解,在有效剔除噪声的同时保持了人体组织的关键特征.为了最小化降噪后的均方误差,采用双元软阈值进行滤波.该研究为临床工作者提供更为准确的、智能化的数据和临床决策支持能力.实验结果验证了该提升方案的低时间复杂度和接近于传统小波的极小的重构误差,在定量分析和临床观测方面都获得了更好的结果. The present study of Extracorporeal Shock Wave Lithotripsy (ESWL) system focuses on the topic of energy emission, but there are less optimization research on the information acquisition. To achieve the goal of stone fragmentation without any damage to the human body, efficient data acquisition in ESWL images is an important research subject. For processing information of medical treatment activity, based on the statistical distribution of image pixels, adaptive wavelet lifting schemes were applied to different image regions using a adaptive selector, by which noise suppression was fulfilled while key features of the human body were retained. To achieve minimal mean square error, bivariate soft thresholding was provided here. This study provided more accurate, intelligent data, and clinical decision support ability for medical personnels. The experimental results demonstrate the proposed method is of low complexity in its implementation time and generates minimal reconstruction error approaching that of the classical wavelets. Moreover, this algorithm outperforms the existing methods in terms of quantitative performance measures as well as clinical observations.
出处 《湖南科技大学学报(自然科学版)》 CAS 北大核心 2013年第1期75-79,共5页 Journal of Hunan University of Science And Technology:Natural Science Edition
基金 湖南省自然科学基金项目(10JJ5020) 湖南省哲学社会科学基金项目(12YBA323) 湖南省科技计划项目(2012FJ3058)
关键词 体外震波碎石 提升方案 自适应选择子 双元软阈值 extracorporeal shock wave lithotripsy lifting scheme adaptive selector bivariate soft thresholding
  • 相关文献

参考文献10

  • 1Fukuhara K, Morita N. FDTD simulation of nonlinear ultrasonic pulse propagation in ESWL using equations including Lagrangian [ J ]. Electrical Engineering in Japan, 2009, 169 (4) :29 -36.
  • 2Wolfgang E. The mechanisms of stone fragmentation in ESWL[ J].Ultrasound in Medicine and Biology, 2001,27(5) : 683 -693.
  • 3Donoho D L. De - noising by soft - thresholding [ J ]. IEEE Transactions on Information Theory, 1995,41 (3) :613 -627.
  • 4Tao Y, Lain E C M, Tang Y Y. Feature extraction using wavelet and fractal [ J]. Pattern Recognition Letters, 2001,22(2001 ) :271 - 287.
  • 5谢兴楠,叶根喜,程知言,杨晋炜.瞬变电磁密集采样的小波分析技术及工程应用[J].湖南科技大学学报(自然科学版),2012,27(2):22-25. 被引量:3
  • 6姚屹,邹北骥.一种新的基于自适应提升小波的图像检索算法[J].小型微型计算机系统,2009,30(6):1160-1164. 被引量:4
  • 7Sweldens W. The lifting scheme: A new philosophy in biorthognnal wavelet eonsb'uetion C C 1// Proceedgins of SPIE Wavelet Applications in Signal and Image Processing III, San Diego, CA, USA, 1995, 2569(1) :68 -79.
  • 8Oonincx P J, De Zeeuw P M. Adaptive lifting for shape - based image retrieval [ J ]. Pattern Recognition, 2003, 36 ( 11 ) : 2663 - 2672.
  • 9Zhao X, Wang S, Dcng C. Image denoising algorithm based on the directional adaptive red - black wavelet transform [ C ]// International Symposium on Intelligent Information Technology Application, Shanghai, China, 2008, 1:390 - 394.
  • 10Claypoole R, Davis G, Sweldens W, et al. Nonlinear wavelet transforms for image coding I C // Proceedings of the Asilomar Conference on Signals, Systems & Computers, Pacific Grove, CA, USA, 1998, 1:662-667.

二级参考文献8

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部