期刊文献+

一类奇异二阶三点边值问题正解的存在性

Existence of Positive Solutions for the Singular Second-order Three-point Boundary Value Problem
下载PDF
导出
摘要 运用锥上的Guo-Krasnoselskii’s不动点定理证明了奇异二阶三点边值问题-u″=λh(t)f(t,u),0<t<1,u(0)=αu(η),u(1)=βu(η)至少一个或两个正解的存在性. In this paper, we study the existence of at least one or two positive solutions for the singular second - order three - point boundary value problem - u" = Ah(t)f(t, u) ,0 〈 t 〈 1 ,u(0) = au( 7/), u( 1 ) =βu(η). Our arguments are based on the well- known Guo- Krasnoselskii's fixed- point theorem in cones.
作者 魏嘉 王静
出处 《四川文理学院学报》 2013年第2期20-23,共4页 Sichuan University of Arts and Science Journal
基金 甘肃省自然科学基金项目(3ZS042-B25-021) 甘肃省教育厅科研项目(1013B-03)
关键词 奇异 边值问题 锥不动点定理 正解 singular boundary value problem fixed point theorem in cones positive solution
  • 相关文献

参考文献8

  • 1Timoshenko S. Theory of Elastic Stability [ M ]. NewYork : Mcgraw - Hill, 1961 : 214.
  • 2Sun J P, WEI J. Existence of Positive Solution for Semipositonc Second - order Three - point Boundary - value Problem [ J ]. Differential Equations ,2008 (41) : 1 - 7.
  • 3Agarwal R P, Regan D. Multiple Nonnegative Solutions for Second Order Impulsive Differential Equations [ J ]. Appl Math Corn- put,2000(114) :51 -59.
  • 4Kong L J. Second Order Singular Boundary Value Problems with Integral Boundary Conditions [ J ]. Nonlinear Analysis, 2010 (72) : 2628 - 2638.
  • 5Ma R. Positive Solutions of a Nonlinear Three -point Boundary Value Problems[J]. J Differential Equations,1995(~M) :1 -8.
  • 6Yao Q. An Existence Theorem Of A Positive Solution To a Semipositone Sturm - liouville Boundary Value Problem [ J ]. Appl Math Lett,2010 (23) : 1401 - 1406.
  • 7Guo D, Lakshmikantham V. Nonlinear Problems in Abstract Cones [ M ]. New York:Academic Press, 1988:178.
  • 8Krasnoselskii M A. Positive Solutions of Operator Equations [ M ]. Groningen: Noordhoff, 1964 : 304 - 305.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部