期刊文献+

LiFePO_4/石墨烯复合材料的电化学性能比较 被引量:4

Comparative Study of Electrochemical Performance of LiFePO_4/Graphene Composites
下载PDF
导出
摘要 分别以水热合成的石墨烯(H-Gr)和商业化石墨烯(C-Gr)为载体,以溶胶-凝胶法合成的LiFePO4(S-LFP)和商业化的LiFePO4(C-LFP)为活性组分,通过固相法制备了4个LiFePO4/石墨烯复合物。采用X射线粉末衍射(XRD)、扫描电镜(SEM)和电化学性能测试,对上述LiFePO4/石墨烯复合物进行了对比研究。实验结果表明,C-LFP/H-Gr显示了最高的可逆放电容量,0.1C倍率下,达到155.0mA.h.g-1,其次是C-LFP/C-Gr(144.6mA.h.g-1)和S-LFP/H-Gr(131.5mA.h.g-1),S-LFP/C-Gr的性能最差,仅为119.6mA.h.g-1。C-LFP/H-Gr较高的电化学容量,一方面可归结于商业化的LiFePO4较小的粒径和良好的晶型结构;另一方面水热合成的石墨烯小的片层结构对LiFePO4的良好包覆,不仅增强了材料导电性,而且提高了活性物质LiFePO4的利用率。 Using hydrothermal--synthesized graphene (H--Gr) and commercial graphene (C--Gr) as the carries, respectively, four LiFePO4/Graphene composites were prepared by a solid--state method with sol --gel--synthesized LiFePO4 (S--LFP) and commercial LiFePO4 (C--LFP) as the active ingredient, respectively. The structures and electrochemical performances of those composites were investigated and compared by X--ray powder diffraction (XRD), scanning electron microscopy (SEM), and electrochemical measurements. The experimental results indicated that the C--LFP/H--Gr composite exhibited a highest reversible discharge-- capacity of 155.0mA h g-1 at 0. 1C rate, followed by C-- LFP/C-- Gr (144. 6mA h g-l) and S--LFP/H--Gr (131.5mA h g-l), and S--LFP/C--Gr showed the lowest capacity of 119.6mA h g-1 among four samples. The improved electrochemical capacity of the C-- LFP/H--Gr composite might due to the smaller particle size and well--crystallized structure of commercial LiFePO4. On the other hand, LiFePO4 is well--coated by small nanosheets of hydrothermal--synthe sized graphene, which not only enhanced the conductivity of composites, but also improved the utilization of the active ingredient.
出处 《常州大学学报(自然科学版)》 CAS 2013年第1期76-81,共6页 Journal of Changzhou University:Natural Science Edition
基金 江苏省科技支撑计划基金(BE201113) 江苏省企业博士集聚计划基金(2011Z0062)
关键词 锂离子电池 LIFEPO4 石墨烯 固相法 电化学容量 lithium -- ion batteries lithium iron phosphate graphene solid -- state method electro-chemical capacity
  • 相关文献

参考文献18

  • 1Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho --olivines as positive--electrode materials for rechargeable lithi- um batteries [J]. Journal of the Electrochemical Society, 1997, 144 (4): 1188-1194.
  • 2Chang Z R, Lv H J, Tang H G, et al. Synthesis and charac- terization of high--density LiFePO4/C composites as cathode materials for lithium-- ion batteries [J]. Electrochimica Acta, 2009, 54: 4595-4599.
  • 3Yah X D, Yang G L, Liu J, et al. An effective and simple way to synthesize LiFePO4/C composite [J]. Eleetrochimica Acta, 2009, 54: 5770-5774.
  • 4Doherty C M, Caruso R A, Smarsly B M, et al. Hierar- chieally porous monolithic LiFePO4/earbon composite electrode materials for high power lithium ion batteries [J]. Chemistry of Materials, 2009, 111: 5300-5306.
  • 5Chen H, Chen Y F, Gong W Q, et al. Preparation and elec- trochemical performance of LiFePO4/C composite with network connections of nano-- carbon wires [J]. Materials Letters, 2011, 65: 559-561.
  • 6王茂华,汤庆华,姚超,浦琦伟.金属Ni掺杂对中间相碳微球/石墨复合材料烧结性能的影响[J].常州大学学报(自然科学版),2010,22(3):13-16. 被引量:3
  • 7Wang G X, Needham S, Yao J, et al. A study on LiFePO4 and its doped derivatives as cathode materials for lithium--ion batteries [J]. Journal of Power Sources, 2006, 159: 282- 286.
  • 8Li L J, Li X H, Wang Z X, et al. Inexpensive synthesis of metal--doped LiFePC4 from laterite lixivium and its electro- chemical characterization [J]. Journal of Alloys and Com- pounds, 2010, 497: 176-181.
  • 9Xia Y, Zhang W K, Huang H, et al. Self--assembled meso- porous LiFePO4 with hierarchical Spindle-- like architectures for high--performance lithium- ion batteries [ J]. Journal of Power Sources, 2011, 196: 5651-5658.
  • 10Zhang W J. Structure and performance of LiFePO4 cathode materials: A review [J]. Journal of Power Sources, 2011, 196.. 2962-2970.

二级参考文献68

  • 1邹彦文,张杰,贺俊,郑永平,唐亚平,孙斌,邱学良.质子交换膜燃料电池复合材料双极板的研究[J].新型炭材料,2004,19(4):303-308. 被引量:29
  • 2许斌,陈鹏.中间相碳微珠(MCMB)的开发、性质和应用[J].新型炭材料,1996,11(3):4-8. 被引量:24
  • 3Padhi,A.K.; Nanjundaswamy,K.S.; Masquelier,C.; Okada,S.; Goodenough,J.B.J.Electrochem.Soc.1997,144,1188.
  • 4Padhi,A.K.; Nanjundaswamy,K.S.; Masquelier,C.; Okada,S.; Goodenough,J.B.J.Electrochem.Soc.1997,144,1609.
  • 5Ravet,N.; Goodenough,J.B.; Besner,S.; Simoneau,M.; Hovington,P.; Armand,M.Proceedings of the 196th ECS Meeting,Honolulu,HI,Oct 1999; pp 17-22.
  • 6Belharouak,I.; Johnson,C.; Amine,K.Electrochem.Commun.2005,7,983.
  • 7Takeuchi,T.; Tabuchi,M.; Nakashima,A.; Nakamura,T.; Miwa,Y.; Kageyama,H.; Tatsumi,K.J.Power Sources 2005,146,575.
  • 8Chen,Z.Y.; Zhu,H.L.; Ji,S.; Fakir,R.; Linkov,V.Solid State Ionics 2008,179,1810.
  • 9Chen,Z.H.; Dahn,J.R.J.Electrochem.Soc.2002,149,A1184.
  • 10Zhang,D.; Cai,R.; Zhou,Y.K.; Shao,Z.P.; Liao,X.Z.; Ma,Z.F.Electrochim.Acta 2010,55,2653.

共引文献21

同被引文献72

  • 1郝亮,张校刚.石墨烯/氢氧化镍复合材料的制备[C]//2009年第十五次全国电化学学术会议.长春:吉林大学出版社2009.
  • 2Brandt K. Historical development of secondary lithium batter- ies[J]. Solid State Ionics, 1994, 69~ 173 - 183.
  • 3Zhang B, Zheng Q B, Huang Z D~ et al. SnOz-graphene-car- bun nanotube mixture for anode material with improved rate ca- pacities [J]. Carbon, 2011, 49:4524-4534.
  • 4Zhang H K, Song H H, Chen X H, et al. Preparation and electrochemical performance of SnOz carbon nanotube core- shell structure composites as anode material for lithium-ion bat- teries [J]. Electrochimica Acta, 2012, 59: 160- 167.
  • 5Wang J, Zhao H L, Liu X T, et al. Electrochemical proper- ties of SnO2/carbon composite materials as anode material for lithium-ion batteries [J]. Electrochimica Aeta, 2011, 56: 6441 - 6447.
  • 6Liu R Q, Li N, Li D Y, et al. Template-free synthesis of SnO2 hollow microspheres as anode material for lithium-ion bat- tery [J]. Materials Letters, 2012, 73: 1- 3.
  • 7Wang F, Song X P, Yao G, et al. Carbon-coated mesoporous SnO2 nanospheres as anode material for lithium ion batteries [J]. Scripta Materialia, 2012, 66.. 562- 565.
  • 8Liu H D, Huang J M, Li X L, et al. SnOz nanorods grown on graphite as a high-capacity anode material for lithium ion batteries [J], Ceramics International, 2012, 38: 5145 - 5149.
  • 9Du Z J, Zhang S C, Jiang T, et al. Facile synthesis of SnO2 nanocrystals coated conducting polymer nanowires for enhanced lithium storage[J]. Journal of Power Sources, 2012, 219~ 199 - 203.
  • 10Li H Q, Zhou H S. Enhancing the performances of Li-ion batteries by carbon-coating: present and future[J], Chemical Communications, 2012, 48 (9): 1201 - 1217.

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部