期刊文献+

构建可控释血管内皮生长因子多壁碳纳米管的复合支架 被引量:1

Constructing a vascular endothelial growth factor sustained-released multi-wall carbon nanotube composite scaffold
下载PDF
导出
摘要 背景:单纯植入猪小肠黏膜下层修复腹壁缺损存在早期血管化不足,导致修复失败。目的:构建可控释血管内皮生长因子的多壁碳纳米管-猪小肠黏膜下层复合支架,评价其体外控释血管内皮生长因子性能、力学性能及细胞毒性。方法:通过浸染将装载血管内皮生长因子的多壁碳纳米管复合到猪小肠黏膜下层上,构建可控释血管内皮生长因子的复合支架,并根据多壁碳纳米管与猪小肠黏膜下层的不同质量比(0,1%,3%,5%,10%)构建5种多壁碳纳米管-猪小肠黏膜下层。结果与结论:①复合支架的血管内皮生长因子控释性能:随时间的延长,各组的累积浓度增高,且随着多壁碳纳米管质量的增加,释放浓度也逐渐增加。②复合支架的力学性能:1%,3%,5%,10%多壁碳纳米管-猪小肠黏膜下层最大载荷及弹性模量均高于猪小肠黏膜下层(P<0.05),且随着多壁碳纳米管质量的增加,最大载荷逐渐增加。③复合支架的成纤维细胞毒性:多壁碳纳米管在复合支架中质量分数≤5%时对细胞的生长无影响。表明构建的多壁碳纳米管复合支架具备良好的血管内皮生长因子控释性能、力学性能及促进内皮细胞增殖的能力。 BACKGROUND: The implantation of porcine small intestinal submucosa (PSIS) for abdominal wall defects has deficiency in early vascularization, which can result in the failure of abdominal wall reconstruction.OBJECTIVE: To construct a multi-wall carbon nanotube (MWCNT)-PSIS composite scaffold which can sustained-release vascular endothelial growth factor (VEGF), and to evaluate the VEGF sustained-release performance, mechanical property and cytotoxicity of the composite scaffold in vitro.METHODS: The VEGF-Ioaded MWCNT was integrated with two-layer PSIS by dip dyeing to construct the composite scaffold. According the different weight percents of MWCNT, five groups were divided: PSIS (0%), 1%,3%, 5%, 10% MWCNT-PSIS.RESULTS AND CONCLUSION: (1) The VEGF sustained-release property of the composite scaffolds: The accumulation concentration of each group increased with the extension of time, meanwhile the released concentration increased gradually with the increasing quality of the MWCNT. (2) The mechanical property of the composite scaffolds: The maximum load and elastic modulus of 1%, 3%, 5%, 10% MWCNT-PSIS groups were superior to original PSIS scaffold (control group) (P 〈 0.05). The maximum load increased gradually along with the increasing quality of the MWCNT. (3) The fibroblast cytotoxicity of the composite scaffolds: The composite scaffolds that contained ≤ 5% MWCNT were proved to have no significant influence on the fibroblast proliferation. The above results in vitro confirmed the composite scaffold we constructed possesses excellent VEGF sustained-released performance, improves mechanical property and promotes the endothelial cell proliferation.
出处 《中国组织工程研究》 CAS CSCD 2013年第3期433-439,共7页 Chinese Journal of Tissue Engineering Research
基金 上海交通大学医工(理)交叉基金面上项目(YG2010MS50) 上海市科学技术委员会资助项目(074119649)~~
关键词 生物材料 纳米生物材料 血管内皮生长因子 多壁碳纳米管 猪小肠黏膜下层 复合支架 腹壁缺损 最大载荷 弹性模量 细胞毒性 省级基金 生物材料图片文章 biomaterials nano-biological materials vascular endothelial growth factor multi-wall carbonnanotube porcine small intestinal submucosa composite scaffolds abdominal wall defects maximum loading elastic modulus cytotoxicity provincial grants-supported paper biomaterial photographs-containing paper
  • 相关文献

参考文献16

  • 1B?hm G,Steinau G,Kr?hling E. Is biocompatibility affected by constant shear stress --comparison of three commercial y available meshes in a rabbit model[J].{H}JOURNAL OF BIOMATERIALS APPLICATIONS,2011,(07):721-741.
  • 2Liu Z,Tang R,Zhou Z. Comparison of two porcine-derived materials for repairing abdominal wal defects in rats[J].PLoS One,2011,(05):e20520.
  • 3Bel on JM,Rodriguez M,Garcia-Honduvil a N. Comparing the behavior of different polypropylene meshes (heavy and lightweight) in an experimental model of ventral hernia repair[J].J Biomed Mater Res Part B Appl Biomater,2009,(02):448-455.
  • 4Iannitti DA,Hope WW,Norton HJ. Technique and outcomes of abdominal incisional hernia repair using a synthetic composite mesh:a report of 455 cases[J].J Am Col Surg,2008,(01):83-88.
  • 5Hashizume R,Fujimoto KL,Hong Y. Morphological and mechanical characteristics of the reconstructed rat abdominal wal fol owing use of a wet electrospun biodegradable polyurethane elastomer scaffold[J].{H}BIOMATERIALS,2010,(12):3253-3265.
  • 6Franklin ME Jr,Gonzalez JJ Jr,Michaelson RP. Preliminary experience with new bioactive prosthetic material for repair of hernias in infected fields[J].{H}Hernia:THE JOURNAL OF HERNIAS AND ABDOMINAL WALL SURGERY,2002,(04):171-174.
  • 7Franklin ME Jr,Gonzalez JJ Jr,Glass JL. Use of porcine smal intestinal submucosa as a prosthetic device for laparoscopic repair of hernias in contaminated fields:2-year fol ow-up[J].{H}Hernia:THE JOURNAL OF HERNIAS AND ABDOMINAL WALL SURGERY,2004,(03):186-189.
  • 8Lai JY,Chang PY,Lin JN. Body wal repair using smal intestinal submucosa seeded with cel s[J].{H}Journal of Pediatric Surgery,2003,(12):1752-1755.
  • 9Junge K,Klinge U,Klosterhalfen B. Influence of mesh materials on col agen deposition in a rat model[J].{H}Journal of Investigative Surgery,2002,(06):319-328.
  • 10许永,王静,胡金平,童小翠,张明旭.多壁碳纳米管的纯化及表面修饰[J].中国科技论文在线,2010,5(6):423-426. 被引量:13

二级参考文献31

  • 1Allman AJ, McPherson TB, Merrill LC, et al. The Th2-restricted immune response to einogenic small intestinal submucosa does not influence systemic protective immunity to viral and bacterial pathogens. Tissue Eng, 2002, 8(1):53.
  • 2Raeder RH, Badylak SF, Sheehan C, et al. Natural anti-galactose alpha 1, 3 galactose antibodies delay, but do not prevent the acceptance of extracellular matrix xenografts. Transpl Immunol,2002,10(1):15.
  • 3McPherson TB, Liang H, Record RD, et al. Galalpha(1,3)Gal epitope in porcine small intestinal submucosa. Tissue Eng, 2000;6(3); 233.
  • 4Sarikaya A, Record R, Wu CC, a aL Antimicrobial activity associated with extracellular matrix. Tissue Eng, 2002, 8(1), 63.
  • 5Sacks MS, Gloeckner DC. Quantification of the fiber architecture and biaxial mechanical behavior of porcine intestinal submucosa. J Biomed Mater Res, 1999,46(1): 1.
  • 6Whitson BA, Cheng BC, Kokinl K, et al. Multilaminate resorbable biomedical device under biaxial loading. J Biomed Mater Res, 1998,43(3) : 277.
  • 7Badylak SF, Record R, Lindberg K, et al. Small intestinal submucosa:a substrate for in vitro cell growth. J Biomater Sci Polym Ed, 1998,9(8):863.
  • 8Badylak S, Liang A, Record R, et aL Endothelial call adherence to small intestinal submucosa:an acellular bioscaffold. Biomaterials, 1999, 20(23-24):2 257.
  • 9Hodde JP, Record RD, Tullius RS, et al. Retention of endothelial cell adherence to porcine-derived extracellular matrix after disinfection and sterilization. Tissue Eng, 2002,8(2):225.
  • 10Badylak SF, Kropp B, McPherson T, et al. Small intestinal submucosa:A rapidly resorbed bioscaffold for augmentation cystoplasty in a dog model. Tissue Eng, 1998,4(4):379.

共引文献59

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部