期刊文献+

Exact Solutions of the Two-Dimensional Cubic-Quintic Nonlinear Schrdinger Equation with Spatially Modulated Nonlinearities 被引量:1

Exact Solutions of the Two-Dimensional Cubic-Quintic Nonlinear Schrdinger Equation with Spatially Modulated Nonlinearities
原文传递
导出
摘要 Applying the similarity transformation, we construct the exact vortex solutions for topological charge S≥1 and the approximate fundamental soliton solutions for S = 0 of the two-dimensional cubic-quintic nonlinear Schrodinger equation with spatially modulated nonlinearities and harmonic potential. The linear stability analysis and numerical simulation are used to exam the stability of these solutions. In different profiles of cubic-quintic nonlinearities, some stable solutions for S 〉 0 and the lowest radial quantum number n = 1 are found. However, the solutions for n ≥ 2 are all unstable.
作者 宋祥 李画眉
机构地区 Department of Physics
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2013年第3期290-294,共5页 理论物理通讯(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant No. 11175158 the Natural Science Foundation ofZhejiang Province of China under Grant No. LY12A04001
关键词 VORTEX fundamental soliton harmonic potential 非线性薛定谔方程 五次非线性 空间调制 立方 二维 线性稳定性分析 精确解 相似变换
  • 相关文献

参考文献46

  • 1Y.S. Kivshar and G. Agrawal, Optical Solitons: Prom Fibers to Photonic Crystals, Academic, New York (2003).
  • 2C.J. Pethick and H. Smith, Bose-Einstein Condensation in Dilute Gase, Cambridge University Press, Cambridge (2002).
  • 3V.A. Brazhnyi and V.V. Konotop, Mod. Phys. Lett. B 18 (2004) 627.
  • 4C.S. Gardner, J.M. Greene, M.D. Kruskal, and R.M. Miura, Phys. Rev. Lett. 19 (1967) 1095.
  • 5V.E. Zakharov and A.B. Shabat, Zh. Eksp. Teor. Fiz. 61 (1971) 118.
  • 6V.E. Zakharov and A.B. Shabat, Zh. Eksp. Teor. Fiz. 64 (1973) 1627.
  • 7V.N. Serkin and A. Hasegawa, Phys. Rev. Lett. 85 (2000) 4502.
  • 8V.N. Serkin, A. Hasegawa, and T.L Belyaeva, Phys. Rev. Lett. 98 (2007) 074102.
  • 9J. Belmonte-Beitia, M. Perez-Garcia Vfctor, V. Vekslerchil, and V.V. Konotop, Phys. Rev. Lett. 100 (2008) 164102.
  • 10J. Belmonte-Beitia, M. Perez-Garcfa Vfctor, and V. Vekslerchil, Phys. Rev. Lett. 98 (2007) 064102.

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部