期刊文献+

Computer Simulation Study of Thermal Conduction in 1D Chains of Anharmonic Oscillators

Computer Simulation Study of Thermal Conduction in 1D Chains of Anharmonic Oscillators
原文传递
导出
摘要 In this work thermal conduction in one-dimensional (1D) chains of anharmonic oscillators are studied using computer simulation. The temperature profile, heat flux and thermal conductivity are investigated for chain length N = 100, 200, 400, 800 and 1600. In the computer simulation anharmonicity is introduced due to Fermi-Pasta- U1am-β (FPU-β) model For substrate interaction, an onsite potential due to Frenkel-Kontorova (FK) model has been used. Numerical simulations demonstrate that temperature gradient scales behave as N-1 linearly with the relation J = 0.1765/N. For the thermal conductivity K, KN to N obey the linear relation of the type KN = 0.8805N. It is shown that thermal transport is dependent on phonon-phonon interaction as web as phonon-lattice interaction. The thermal conductivity increases linearly with increase inanharmonicity and predicts relation κ =0.133 + 0.804β. It is also concluded that for higher value of the strength of the onsite potential system tends to a thermal insulator.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2013年第3期361-364,共4页 理论物理通讯(英文版)
关键词 heat conduction thermal conductivity Anharmonic oscillator Fermi-Pasta-Ulam model Frenkel-Kontorova model 计算机模拟 一维链 振荡器 热传导 线性关系 相互作用 热导率 温度分布
  • 相关文献

参考文献22

  • 1E. Fermi, J. Pasta, and S. Ulam, (1955) Studies of Nonlinear Problems, I. Los Alamos Report LA-1940, published later in Collected Papers of Enrico Fermi, E. Segre (Ed.), University of Chicago Press, Chicago (1965) v. 2, p. 78.
  • 2J. Ford, Phys. Rep. 213 (1992) 272.
  • 3Stefano Lepri, Robert Livi, and Antonio Politi, Phys. Rep. 377 (2003) 1.
  • 4A. Dhar, Adv. Phys. 57 (2008) 457.
  • 5Bambi Hu, Baowen Li, and Hong Zhao, Phys. Rev. E 57 (1998) 2992.
  • 6B. Hu, B. Li, and H. Zhao, Phys. Rev. E 61 (2000) 3828.
  • 7Stefano Lepri, Robert Livi, and Antonio Politi, Phys. Rev. Lett. 78 (1997) 1896.
  • 8Nianbei Li and Baowen Li, Phys. Rev. E 76 (2007) 11108.
  • 9T. Mai, A. Dark, and O. Narayan, Phys. Rev. Lett. 98 (2000) 184301.
  • 10C. Giardin'a, R. Livi, A. Politi, and M. Vassalli, Phys. Rev. Lett. 84 (2000) 2144.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部