期刊文献+

用人工神经网络研究钢的硬度的影响因素 被引量:5

Influencing Factors of Steel′s Hardness by Artificial Neural Network
原文传递
导出
摘要 用人工神经网络研究了化学成分及热处理工艺参数对低碳低合金钢的硬度的影响。首先设计了RBF型人工神经网络模型,用"舍一法"改进了模型,使其具有较好的预测性能。然后,用神经网络研究了化学成分和冷速对低碳低合金钢的硬度的定量影响。结果表明,碳的质量分数为0.11%~0.15%时,硬度随碳含量的增加而增大;硅的质量分数为0.24%~0.38%、锰的质量分数为0.94%~1.02%时,硬度值基本不变;铬的质量分数为0~0.6%时,硬度值呈增加趋势;镍的质量分数为0~0.04%时,硬度值基本不变;钼的质量分数为0~0.2%时,硬度值从HV 288降至HV 282;硼的质量分数为1%~2%时,硬度随含量增加而升高;钛、铌、钒的总质量分数为0.06%~0.14%时,硬度值基本不变;冷速从10℃/m增加至170℃/m,硬度值从HV 290增至HV 420。 The artificial neural network was used to research the influence of chemical composition and heat retreatment parameters on the hardness of the steel.Firstly,RBF artificial neural network was established to analyze the relationship of the chemical compositions-cooling rate-hardness,using the method of 'eave-one-out' to practice the model to achieve good prediction performance.Then,quantitative influence of composition and cooling rate on the hardness of low carbon and low alloy steels was investigated using the neural network.The result shows that,the hardness increases with the carbon content from 0.11% to 0.15%;while silicon content is 0.24%-0.38% and manganese content is 0.94%-1.02%,the hardness value basically unchanged;The hardness value has the increasing trend with chrome content is in 0-0.6%;While nickel content is 0-0.04%,hardness value basically unchanged;molybdenum content is 0-0.2%,hardness value falls from HV 288 to HV 282;With boron content rises from 1% to 2%,hardness increases;The total content of vanadium,titanium,niobium changes between 0.06%-0.14%,the hardness value basically unchanged;Cooling rate increases from 10 to 170 ℃/m,hardness value increases from HV 290 to HV 420.
出处 《钢铁研究学报》 CAS CSCD 北大核心 2013年第1期34-38,共5页 Journal of Iron and Steel Research
关键词 低碳低合金钢 硬度 化学成分 冷速 RBF型人工神经网络 low-carbon low-alloy steels hardness chemicals composition cooling rate RBF neural network
  • 相关文献

参考文献15

  • 1Senuma T, Suehiro M, Yada H. Mathematical Models for Pre- dicting Microstructural Evolution and Mechannical Properties of Hot Strip [J]. ISIJ International,1992,32(3) :423.
  • 2Heeht Nielsen. Neurocomputing [M]. Massachussetes: Addi son Wesley Publishing Co Inc, 1991.
  • 3Dobrzanski L A, Sitek W. Comparison of Hardenability Calcu- lation Methods of the Heat-Treatable Constructional Steels [J]. Journal of Materials Processing Technology, 1997(64):117.
  • 4Dobrzanski L A, Sitek.W. Application of Neural Network in Modeling of Hardenability of Constructional Steels [J]. Journal of Materials Processing Technology, 1998(78):59.
  • 5LIU Z Y, WANG W D, GAO W. Prediction of the Mechanical Properties of Hot Rolled C Mn Steels Using Artificial Neural Networks [J]. J Master Proc Tech,1996(57) :332.
  • 6牛济泰,孙雷剑,李海涛,翟瑾潘,樊程,李鑫.基于人工神经网络的微合金钢热轧奥氏体晶粒尺寸模型的研究[J].材料科学与工艺,1999,7(1):12-16. 被引量:14
  • 7由伟,白秉哲,方鸿生.钢的连续冷却转变图的神经网络计算模型及预测软件设计[J].金属热处理,2004,29(7):17-20. 被引量:13
  • 8The No. 1 Iron Factory, Benxi Iron, Steel Corporation, Tsin- ghua University. The Atlas of Super-Cooling Austenite Transformation Diagram [M]. Benxi: The No. 1 Iron Factory Press, Benxi Iron and Steel Corporation, 1978.
  • 9American Society for Metals. Atlas of Isothermal Transforma tion and Cooling Transformation Diagrams [M]. Ohio: Amer ican Society for Metals Press, 1977.
  • 10ZHANG S Z. Atlas of Super-Cooling Austennite Transforma- tion Diagrams [M]. Beijing: Beijing Metallurgy Industry Press, 1993.

二级参考文献24

  • 1王炜,吴耿锋,张博锋,郑兆苾,刘辉,李生.地震预报专家系统ESEP3.0中的知识表示方法[J].中国地震,2004,20(3):285-293. 被引量:3
  • 2李士勇,模糊控制与智能控制,1990年
  • 3王笑天,金属材料学,1987年
  • 4Tang Y S,J Mattrials Processing Tech,1995年,47卷,3/4期,273页
  • 5张立明,人工神经网络的模型及其应用,1994年
  • 6赵彭生,Weiding Technology,1993年,3期,16页
  • 7Robert J,Schilling James,Carroll J.Approximation of nonlinear systems with radial basis function neural networks[J].IEEE TRANSACTIONS ON NEURAL NETWORKS,2001,12(1): 21-28.
  • 8XU Xiao-han,WANG Qing-yin.Emergence of uncertainty information and its classification[M].Proceeding of SCT'94,武汉: 华中理工大学出版社,1994.679-682.
  • 9Kirkaldy J S,Venugopalan D.Proceedings of an international conference on phase transformations in ferrous alloys [C].Ohio:AIME,1984:125-148.
  • 10Umemoto M,Hiramatsu A,Moriya A.Computer modeling of phase transformation from work-hardened austenite[J].ISIJ International,1992,32(3):306-315.

共引文献79

同被引文献64

引证文献5

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部