期刊文献+

多核环境下非线性特征值问题残量反迭代法并行计算

Parallel Algorithm for Inverse Residual of Nonlinear Eigenvalue Problems Based on Multi-core Computing System Environment
下载PDF
导出
摘要 非线性特征值问题不满足Schur类分解的结论,因此线性特征值问题的很多数值方法不能直接推广到非线性问题.基于多核并行环境的非线性特征值问题数值解法的并行计算,给出了适合于多核并行环境的并行Newton类残量反迭代算法,在多核计算环境上使用Intel Fortran+OpenMP进行了数值试验.数值试验结果表明算法具有较高的加速比和并行效率. For the reason that nonlinear eigenvalue problems do not meet the requirements of Schur faetorization(algorithm), a lot of the existing numerical methods for linear eigenvalue problems cannot be directly extended to nonlinear cases. The numerical methods for nonlinear ei- genvalue problems using parallel computation are studied under the multi-core computing system environment in this paper. The Newton-type parallel inverse residual iteration method (NPIM) is proposed, which agrees with the multi-core parallel system environment. Numerical experiments are performed with Intel Fortran and OpenMP in the multi-core platform. The results show that NPIM has reasonable speedup and parallel efficiency.
作者 王顺绪
出处 《淮海工学院学报(自然科学版)》 CAS 2013年第1期1-4,共4页 Journal of Huaihai Institute of Technology:Natural Sciences Edition
基金 江苏省高校自然科学研究项目(12KJD110001)
关键词 非线性特征值问题 多核计算 OPENMP nonlinear eigenvalue problems~ multi-core computing OpenMP
  • 相关文献

参考文献8

  • 1RUHE A. Algorithms for the nonlinear eigenvalue problem[J]. SIAM Journal on Numerical Analysis. 1973, 10: 674-689.
  • 2NEUMAIER A. Residual inverse iteration for the non- linear eigenvalue problem[J]. SIAM Journal on Nu- merical Analysis, 1985, 22(5): 914-923.
  • 3JARLEBRING E, VOSS H. Rational kryiov for nonlinear eigenproblems, an iterative projection method[J]. Appli- cations of Mathematics, 2005, 50(6): 543-554.
  • 4BAI Zhongzhi, SU Yangfeng. SOAR: a second order Arnoldi method for the solution of the quadratic eigen- value problem[J]. SIAM Journal on Matrix Analysis and applications, 2005, 26 : 540-659.
  • 5BETCKE T, VOSS H. A Jacobi-Davidson-type pro- jection method for nonlinear eigenvalue problems[J]. Future Generation Computer Systems, 2004, 20(3): 363-372.
  • 6SLEIJPEN G, VAN DER VORST H. Quadratic eigenproblems are no problem[J].SIAM News. 1996. 29: 8-9.
  • 7VOSS H. An Arnoldi method for nonlinear eigenvalue problems[J]. Bit Numerical Mathematics, 2004, 44: 387-401.
  • 8MEERBERGEN K. Locking and restarting quadratic eigenvalue solvers [J]. SIAM Journal on Scientific Computing, 2001, 22(5): 1814-1839.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部