期刊文献+

基于图像块分割及差异演化的多聚焦图像融合算法 被引量:2

Multi-focus Image Fusion Based on Image Block Segment and Differential Evolution Algorithm
下载PDF
导出
摘要 对于可见光成像系统光学镜头的焦距是有限的,很难将场景中的所有物体都成像清晰.可以对同一场景不同聚焦点的多幅图像进行融合处理,来获取一幅处处清晰的图像.提出了一种基于图像块分割及差异演化的多聚焦图像融合算法,即先把源图像进行分块,再用空间频率作为清晰度评价函数,判断融合子块应取自哪幅源图像,最终重构成新图像.结果表明,与小波变换和遗传算法相比,该方法速度快且融合效果好. In the visible light imaging system optical lenses are limited in their depth of field. Con- sequently, it is difficult to obtain a good focus for all objects in a picture. One way to get an eve- rywhere-in-focus image is to fuse the images of the same scene taken from different focal settings. In this paper, a novel optimal method for multi-focus image fusion using the image block segment and differential evolution algorithm is presented. The source images are first decomposed into blocks, and then space frequency is employed as a sharpness criterion function to select the sharp- er blocks. The selected blocks are finally combined to construct the fused image. Experimental results prove that this algorithm is faster and more precise than the wavelet transform and genetic algorithm.
作者 马文娟 詹倩
出处 《淮海工学院学报(自然科学版)》 CAS 2013年第1期5-8,共4页 Journal of Huaihai Institute of Technology:Natural Sciences Edition
基金 安徽理工大学校青年基金项目(QN201132)
关键词 多聚焦图像融合 清晰度 差异演化 遗传算法 multi-focus image fusion sharpness differential evolution genetic algorithm
  • 相关文献

参考文献3

二级参考文献23

  • 1O. Hrstka, A. Kucerova, M. Leps, et al. A Competitive Comparison of Different Types of Evolutionary Algorithms[J ] . Computers and Structures, 2003, 81: 1979 -1990.
  • 2DE Homepage. Http: //www. icsi. Berkeley. edu/storn/code.htm.
  • 3Ji - Pyng Chiou, Feng - Sheng Wang. A Hybrid Method of Differential Evolution with Application to Optimal Control Problems of a Bioprocess System [ C ] . The 1998 IEEE International Conference on Evolutionary Computation Proceedings, 1998, 4: 627-632.
  • 4Rainer Store, Kenneth Price. Differential Evolution -A Simple and Efficient Heuristic fur Global Optimization over Continuous Spaces [ J ] . Journal of Global Optimization,1997, 11:341-359.
  • 5M. M. Ali, A. torn. Population Set - based Global Optimization Algorithms: Some Modifications and Numerical Studies [ J ] . Computer & Operations Research, 2004,31 : 1703 - 1725.
  • 6Burt P J, Adelson E H. The Laplacian pyramid as a compact image code[J]. IEEE Trans on Communica tions, 1983, 31(4):532-540.
  • 7Toet A. Image fusion by a ratio of low pass pyramid [J]. Pattern Recognition Letters, 1989, 9 (4) : 255-261.
  • 8Burt P J, Kolczynski R J. Enhancement with application to image fusion [A]. Proc 4th Int Conf on Computer Vision [C]. Ios Alamitos USA: IEEE Computer Society, 1993. 173-182.
  • 9Chipman L J, Orr T M, Graham L N. Wavelets and image fusion[A]. Proc Int Conf on Image Processing [C]. Los Alamitos USA: IEEE Computer Society,1995. 248-251.
  • 10Li H, Manjunath B S, Mitra S. Multisensor image fusion using the wavelet transform [J]. Graphical Models and Image Process, 1995, 57 (3): 235- 245.

共引文献228

同被引文献19

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部