摘要
对于可见光成像系统光学镜头的焦距是有限的,很难将场景中的所有物体都成像清晰.可以对同一场景不同聚焦点的多幅图像进行融合处理,来获取一幅处处清晰的图像.提出了一种基于图像块分割及差异演化的多聚焦图像融合算法,即先把源图像进行分块,再用空间频率作为清晰度评价函数,判断融合子块应取自哪幅源图像,最终重构成新图像.结果表明,与小波变换和遗传算法相比,该方法速度快且融合效果好.
In the visible light imaging system optical lenses are limited in their depth of field. Con- sequently, it is difficult to obtain a good focus for all objects in a picture. One way to get an eve- rywhere-in-focus image is to fuse the images of the same scene taken from different focal settings. In this paper, a novel optimal method for multi-focus image fusion using the image block segment and differential evolution algorithm is presented. The source images are first decomposed into blocks, and then space frequency is employed as a sharpness criterion function to select the sharp- er blocks. The selected blocks are finally combined to construct the fused image. Experimental results prove that this algorithm is faster and more precise than the wavelet transform and genetic algorithm.
出处
《淮海工学院学报(自然科学版)》
CAS
2013年第1期5-8,共4页
Journal of Huaihai Institute of Technology:Natural Sciences Edition
基金
安徽理工大学校青年基金项目(QN201132)
关键词
多聚焦图像融合
清晰度
差异演化
遗传算法
multi-focus image fusion
sharpness
differential evolution
genetic algorithm