期刊文献+

力反馈模式半球谐振陀螺仪振幅控制稳态模型的建立 被引量:4

Establishment of steady state model of amplitude-control for hemispherical resonator gyro under force-rebalance mode
下载PDF
导出
摘要 在力反馈模式下,半球谐振子上主激励电机与反馈激励电机处的振幅控制是半球谐振陀螺控制系统的一个重要环节。为了给出两电机的准确控制电压量,以控制谐振子在有角速率输入时波腹方位角与主激励电机方位基本一致,在建立了谐振子存在密度不均匀缺陷时谐振子的动力学方程的基础上建立了振动位移的状态方程,通过对状态方程的求解,给出了两激励电压的解析表达式。从反馈激励电机的激励电压的表达式中可以得出它与输入角速率、谐振子的缺陷之间的关系,为振幅控制和误差分析打下了基础。根据谐振子结构参数对激励电压进行了计算,计算结果与实际相符,证明了本文推导的半球谐振子振幅稳态模型的正确性。 Amplitude-control of the main excitation and the rebalance excitation is an important part of force-rebalance control system of HRG under force-rebalance mode.Controlling the voltage values of the two excitations could be used to make the azimuth of radial vibration antinode be the same as that of the main excitation.In order to accurately control the voltage values,the state equation about vibration displacement and velocity was established based on the dynamics equations of resonator with the density distributed nonuniformity in the circular direction,and the representations of the two excitation's voltage values were achieved by solving the state equation.The relationships among the input angle rate,the defection of resonator and the force-rebalance voltage were got by the force-rebalance voltage representation,which lay a foundation for the vibration amplitude-control and the error analysis.By calculating the excitation voltage and contrasting with the voltage of practical HRG,the correctness of the established steady state model of amplitude-control for HRG are proved.
出处 《中国惯性技术学报》 EI CSCD 北大核心 2013年第1期106-111,共6页 Journal of Chinese Inertial Technology
基金 国防预研项目(51309050601)
关键词 半球谐振陀螺 力反馈模式 正交控制 幅值控制 hemispherical resonator gyro force-rebalance mode quadrature control amplitude control
  • 相关文献

参考文献8

  • 1Friedland B, Hutton M F. Theory and error analysis of vibrating-member gyroscope[J]. IEEE Transactions on Automatic Control, 1978, AC-23(4): 545-556.
  • 2IEEE Aerospace and Electronic Systems Society. IEEE Std 1431, standard specification format guide and test procedure for Coriolis vibratory gyros[S]. Published 20 December 2004. Printed in the United States of America.
  • 3任顺清,赵洪波.半球谐振子密度分布不均匀对输出精度的影响[J].中国惯性技术学报,2011,19(3):364-368. 被引量:15
  • 4马特维耶夫BA,利帕特尼科夫BH,阿廖欣AB,等.固体波动陀螺[M].杨亚非,赵辉,译.北京:国防工业出版社,2009.
  • 5陈友朋,钱明忠,陈滨.两类微分方程组的特解表达式[J].高等数学研究,2011,14(3):3-5. 被引量:4
  • 6Zhbanov Y K, Zhuravlev V P. Effect of movability of the resonator center on the operation of a hemispherical resonator gyro[J]. Mechanics of Solids, 2007, 44(3): 851-859.
  • 7Shatalov M Y, Joubert S V, Coetzee C E. The influence of mass imperfections on the evolution of standing waves in slowly rotating spherical bodies[J]. Journal of Sound and Vibration, 2011, 330: 127-135.
  • 8Zhbanov Y K. Vibration of a hemispherical shell gyro excited by an electrostatic field[J]. Mechanics of Solids, 2008, 43(3): 328-332.

二级参考文献11

  • 1东北师大数学系微分方程教研室.常微分方程[M].北京:高等教育出版社,1982.220-251.
  • 2Emily L B, Allan Y L. In-flight characterization of Cassini inertial reference units[C]//AIAA Guidance, Navigation and Control Conference and Exhibit, 20-23 August 2007. Hilton Head, South Carolina, AIAA 2007-6340.
  • 3B.A.MaTBeea,B.H.YlvtnaTnnroB, A.B.A.aexiH.HpoegTnpo8 aHrie.Boauoaoro rBeporeJrrnoro rrapocKona[M]. t3,aaxea1,erao MFTY mei-iriH.3.13ayMai-la, 1998: 1-43.
  • 4Emily L B, Allan Y L. In-flight characterization of Cassini inertial reference units[C]//AIAA Guidance, Navigation and Control Conference and Exhibit, 20 - 23 August 2007 Hilton Head, South Carolina, AIAA 2007-6340.
  • 5Jiayi Q, Xue C, Shunqing R, Changhong W. Dynamic error mechanism analysis of HRG[C]//ISSCAA2008. Shenzhen, 2008-12.
  • 6Zhbanov Y K. Vibration of a hemispherical shell gyro excited by an electrostatic field[J]. Mechanics of Solids, 2008, 43(3): 328-332.
  • 7Zhbanov Y K, Zhuravlev V P. Effect of movability of the resonator center on the operation of a hemispherical resonator gyro[J]. Mechanics of Solids, 2007, 44(3): 851-859.
  • 8高胜利,吴简彤.基于轨迹图法的半球谐振陀螺动力学模型描述[J].中国惯性技术学报,2007,15(5):589-592. 被引量:2
  • 9祁家毅,任顺清,冯士伟,陈尧,王常虹.半球谐振陀螺仪随机误差分析[J].中国惯性技术学报,2009,17(1):98-101. 被引量:15
  • 10陈友朋,钱明忠,黄娟娟.三类常系数非线性常微分方程的特解表达式[J].高等数学研究,2009,12(4):48-51. 被引量:1

共引文献15

同被引文献13

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部