摘要
大学物理教学中,一些基本概念的讲授不仅对于物理概念本身的深化十分重要,而且对于现代物理学思想的把握和对后续课程的学习也具有十分重要的作用.通过讨论角动量及其在宇称变换下的性质,我们介绍了轴矢量的概念,并在量子力学层次对宇称变换进行了分析,将量子力学层次的态函数和场算符进行了分类,同时说明了在基本粒子物理研究当中对复合粒子进行分类时一个重要的量子数——宇称.
In the process of teaching college physics, detailed analysis of some elementary concepts is impor- tant both for deeper understanding of the concepts itself and holding the idea of the modern physics, as well as pro- ceeding to later curriculums. By studying the angular momentum and its properties under the parity transformation, the concept of axial vector is introduced. The parity transformation in quantum mechanics is analyzed such that the state wave function and the field operator are classified. The important concept such as the parity is strengthened due to its importance in classifying the composite particles in elementary particle physics.
出处
《大学物理》
北大核心
2013年第2期22-24,30,共4页
College Physics
基金
国家自然科学基金项目(11105222)资助
关键词
角动量
宇称
量子数
复合粒子
angular momentum
parity
quantum number
composite particle