期刊文献+

LiMn_2O_4纳米晶的低温水热前驱体法合成与表征 被引量:2

Synthesis and Characterization of Nanocrystalline LiMn_2O_4 by Hydrothermal Precursor Method with Low Temperature
下载PDF
导出
摘要 LiMn2O4由于电压高、价格便宜、对环境基本无污染而成为最有希望的备选正极材料之一.大量实验研究表明,制备方法和制备条件的不同会在很大程度上影响LiMn2O4材料的性能.以Mn(CH3COO)2.4H2O和Na2S2O8为原料,采用低温水热法制得纳米晶前驱体β-MnO2粉末,然后将前驱体β-MnO2粉末与LiOH.H2O混合后煅烧即可制得纳米晶LiMn2O4.结果表明,LiMn2O4粉末晶化程度高,粒度分布较窄,平均粒径约在250,nm,用所得的粉末样品进行电化学性能侧试,其首次放电比容量可达130.5,mA.h/g,循环性能也较好. LiMn204 is one of the most promising cathode materials for its high voltage, low cost and non-pollution to the environment. The quality of LiMn204 powers strongly depends on the synthesis methods and conditions. The main purpose of this paper was to explore the best method for the LiMn204 synthesis. The nanometer precursor fl-MnO2 was produced through the hydrothermal reaction with low temperature using Mn (CH3COO) 2'4H20 and Na2S208. Then the nanometer precursor fl-MnO2 and LiOH'H20 were mixed together in order to be calcined to synthesize the nanometer LiMn204. The result shows that nanometer LiMn204 powders have a high degree of crystallization, stable crystal structures, and ultrafine particles with 250 nm in average size. The as-synthesized products have been measured as cathode materials with good electrochemical properties. The first discharge capacity of the cathode was 130.5 mA.h/ g, and the specific capacity after many cycles of this material was excellent.
出处 《天津大学学报》 EI CAS CSCD 北大核心 2013年第2期150-155,共6页 Journal of Tianjin University(Science and Technology)
基金 国家基金资助项目资助项目(20973124)
关键词 LIMN2O4 低温水热前驱体法 纳米晶 电化学性能 LiMn204 hydrothermal precursor method with low temperature nanocrystalline electrochemicalproperties
  • 相关文献

参考文献17

  • 1唐致远,邱瑞玲,腾国鹏,刘元刚.锂离子电池正极材料LiFePO4的研究进展[J].化工进展,2008,27(7):995-1000. 被引量:22
  • 2Tamatucci G G, Pereira N, Zheng T, et al. Failure mechanism and improvement of the elevated temperature cycling of LiMn2O4 compounds through the use of the LiAlxMn2-xO4-x solid solution [J]. J Electrochem Soc, 2001, 148: A171-A182.
  • 3Winter M, Besenhard J O, Spahr M E, et al. Insertion electrode materials for rechargeable lithium batteries [J]. Advanced Materials, 1998, 10(10): 725-763.
  • 4Arumugam D, Kalaignan G P, Manisanka E Development of structural stability and the electrochemical performances of "La" substituted spinel LiMn2O4 cathode materials for rechargeable lithium-ion batteries [J]. Solid State Ionics, 2008, 179: 580-586.
  • 5Guo Huajun, Xiang Kaixiong, Cao Xuan, et al. Preparation and characteristics of Li2FeSiO4/C composite for cathode of lithium ion batteries [J]. Transactions of Nonferrous Metals Society of China, 2009, 19(4): 166-169.
  • 6刘兴泉,刘培松,陈召勇,陈栋梁,张伯兰,李庆,于作龙.锂离子电池正极材料LiMn_2O_4的合成及其电化学性能研究[J].功能材料,2001,32(2):178-180. 被引量:18
  • 7lqbal M J, Ahmad Z. Electrical and dielectric properties of lithium manganate nano-materials doped with rare-earth elements [J]. Journal of Power Sources, 2008, 179: 763-769.
  • 8陶菲,沈俊,张昭.溶胶—凝胶—酯化法制备锂离子电池正极材料尖晶石LiMn_2O_4[J].四川有色金属,2003(3):18-21. 被引量:10
  • 9Huang H, Brucee P G. 3 V and 4 V lithium manganese oxide cathodes for rechargeable lithium batteries [J]. J PowerSourees, 1995, 54(1): 52-57.
  • 10Xia Yongjao, Hideshima Y, Kumada N, et al. Studies on Li-Mn-O spinel system(obtained from meltimpregnation method) as a cathode for 4 V lithium batteries (Part Ⅴ) : Enhancement of the elevated temperature performance of Li/LiMn/O4 cells [J]. JPower Sources,1998, 74(1): 24-28.

二级参考文献60

共引文献97

同被引文献11

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部