摘要
The efficacy of Bacillus cereus X5 as a potential biological control agent against root-knot nematodes was evaluated in vitro by examining second-stage juvenile mortality and egg hatching rate under addition of culture filtrate and in planta by application of bio-organic fertilizers enhanced with B. cereus X5, B. thuringiensis BTG, or Trichoderma harzianum SQR-T037 alone or together in greenhouse and field experiments. The biofumigation of the root-knot nematode-infested soil with organic materials (chicken manure, pig manure and rice straw) alone or in combination with B. cereus X5 was also conducted in greenhouse experiments. In laboratory, the filtrate of B. cereus X5 more effectively reduced egg hatching rates during the incubation period for 14 d and more effectively killed the second-stage juvenile during the incubation period of 24 h than that of B. thuringiensis BTG. The highest dry shoot weights for greenhouse tomatoes and field muskmelons were found in both the treatment consisting of the bio-organic fertilizer enhanced with the three biocontrol agents and the treatment consisting of the bio-organic fertilizer enhanced only with B. cereus X5. The two bio-organic fertilizers achieved better nematicidal effects than those enhanced only with B. thuringiensis BTG or T. harzianum SQR-T037. B. cereus X5 also enhanced effect of biofumigation, which resulted in increased plant biomass and reduced nematode counts in the roots and rhizosphere soil. Therefore, these results suggested that biological control of root-knot nematodes both in greenhouses and fields could be effectively achieved by using B. cereus X5 and agricultural wastes.
The efficacy of Bacillus cereus X5 as a potential biological control agent against root-knot nematodes was evaluated in vitro by examining second-stage juvenile mortality and egg hatching rate under addition of culture filtrate and in planta by application of bio-organic fertilizers enhanced with B. cereus X5, B. thuringiensis BTG, or Trichoderma harzianum SQR-T037 alone or together in greenhouse and field experiments. The biofumigation of the root-knot nematode-infested soil with organic materials (chicken manure, pig manure and rice straw) alone or in combination with B. cereus X5 was also conducted in greenhouse experiments. In laboratory, the filtrate of B. cereus X5 more effectively reduced egg hatching rates during the incubation period for 14 d and more effectively killed the second-stage juvenile during the incubation period of 24 h than that of B. thuringiensis BTG. The highest dry shoot weights for greenhouse tomatoes and field muskmelons were found in both the treatment consisting of the bio-organic fertilizer enhanced with the three biocontrol agents and the treatment consisting of the bio-organic fertilizer enhanced only with B. cereus X5. The two bio-organic fertilizers achieved better nematicidal effects than those enhanced only with B. thuringiensis BTG or T. harzianum SQR-T037. B. cereus X5 also enhanced effect of biofumigation, which resulted in increased plant biomass and reduced nematode counts in the roots and rhizosphere soil. Therefore, these results suggested that biological control of root-knot nematodes both in greenhouses and fields could be effectively achieved by using B. cereus X5 and agricultural wastes.
基金
Supported by the National Basic Research Program(973 Program) of China(No.2011CB100503)
the National Department Public Benefit Research Foundation of China(No.201103004)