期刊文献+

On 2-Site Voronoi Diagrams Under Geometric Distance Functions 被引量:2

On 2-Site Voronoi Diagrams Under Geometric Distance Functions
原文传递
导出
摘要 We revisit a new type of Voronoi diagram, in which distance is measured from a point to a pair of points. We consider a few more such distance functions, based on geometric primitives, namely, circles and triangles, and analyze the structure and complexity of the nearest- and furthest-neighbor 2-site Voronoi diagrams of a point set in the plane with respect to these distance functions. In addition, we bring to notice that 2-point site Voronoi diagrams can be alternatively interpreted as 1-site Voronoi diagrams of segments, and thus, our results also enhance the knowledge on the latter. We revisit a new type of Voronoi diagram, in which distance is measured from a point to a pair of points. We consider a few more such distance functions, based on geometric primitives, namely, circles and triangles, and analyze the structure and complexity of the nearest- and furthest-neighbor 2-site Voronoi diagrams of a point set in the plane with respect to these distance functions. In addition, we bring to notice that 2-point site Voronoi diagrams can be alternatively interpreted as 1-site Voronoi diagrams of segments, and thus, our results also enhance the knowledge on the latter.
出处 《Journal of Computer Science & Technology》 SCIE EI CSCD 2013年第2期267-277,共11页 计算机科学技术学报(英文版)
基金 supported by National Science Foundation of USA under Grants Nos. 0830403 and 1217322 US Office of Naval Research under Grant No. N00014-08-1-1015
关键词 distance function lower envelope Davenport-Schinzel theory crossing-number lemma distance function, lower envelope, Davenport-Schinzel theory, crossing-number lemma
  • 相关文献

参考文献15

  • 1Aurenhammer F. Voronoi diagram - A survey of a fundamen- tal geometric data structure. ACM Computing Surveys, 1991, 23(3): 345-405.
  • 2Okabe A, Boots A, Sugihara B, Chui S N. Spatial Tessela- tions: Concepts and Applications of Voronoi Diagrams (2nd edition). John Wiley and Sons, Inc., 2000.
  • 3Gavrilova M L E. Generalized Voronoi Diagram: A Geometry- Based Approach to Computational Intelligence. Springer Publishing Company, 2008.
  • 4Barequet G, Dickerson M, Drysdale III R L S. 2-point site Voronoi diagrams. In Proc. the 6th International Workshop on Algorithms and Data Structures, Aug. 1999, pp.219-230.
  • 5Roth K F. On a problem of Heilbronn. Proc. London Math- ematical Society, 1951, 26: 198-204.
  • 6Vyatkina K, Barequet G. On 2-site Voronoi diagrams under arithmetic combinations of point-to-point distances. In Proc. the 7th Int. Syrup. Voronoi Diagrams in Science and Engi- neering, June 2010, pp.33-41.
  • 7Dickerson M T, Eppstein D. Animating a continuous family of two-site Voronoi diagrams (and a proof of a bound on the number of regions). In Proc. the 25th Annual Symposium on Computational Geometry, June 2009, pp.92-93.
  • 8Hanniel I, Barequet G. On the triangle-perimeter two-site Voronoi diagram. In Proc. the 6th Int. Syrup. Voronoi Diagrams, June 2009, pp.129-136.
  • 9Hodorkovsky D. 2-point site Voronoi diagrams [M.Sc. Thesis]. Technion-Israel Inst. of Technology, ttaifa, Israel, 2005.
  • 10Asano T, Tamaki It, Katoh N, Tokuyama T. Angular Voronoi diagram with applications. In Proc. the 3rd Int. Syrup. Voronoi Diagrams in Science and Engineering, July 2006, pp. 18-24.

同被引文献29

  • 1刘金义,刘爽.Voronoi图应用综述[J].工程图学学报,2004,25(2):125-132. 被引量:75
  • 2杨钦,张俊安,李吉刚,金茂忠.二维限定Voronoi网格剖分细化算法[J].计算机辅助设计与图形学学报,2006,18(10):1547-1552. 被引量:5
  • 3刘青宝,侯东风,邓苏,张维明.基于相对密度的增量式聚类算法[J].国防科技大学学报,2006,28(5):73-79. 被引量:13
  • 4Edelsbrunner H.Voronoi and delaunay diagrams[M]//A Short Course in Computational Geometry and Topology.Springer International Publishing,2014:9-15.
  • 5Chen DZ,Huang Z,Liu Y,et al.On clustering induced Voronoi diagrams[C]//Foundations of Computer Science Annual Symposium on,2013:390-399.
  • 6Gao L,Yin H,Wei Y,et al.Blind spot detection algorithm of random deployment WSN research based on Voronoi diagram[C]//International Conference on Advances in Mechanical Engineering and Industrial Informatics,2015.
  • 7Bouts QW,Speckmann B.Clustered edge routing[C]//Visualization Symposium(PacificVis),2015:55-62.
  • 8Paul T,Mathew S.Parallel for loop and parallel reduction:An SMP comparison of four languages[J].Procedia Computer Science,2015,46:900-905.
  • 9Deza MM,Deza E.Voronoi diagram distances[M]//Encyclopedia of Distances.Springer Berlin Heidelberg,2014:377-385.
  • 10Sundaram VM,Thangavelu A.A Delaunay diagram-based Min-Max CP-tree algorithm for spatial data analysis[J].Wiley Interdisciplinary Reviews:Data Mining and Knowledge Discovery,2015,5(3):142-154.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部