摘要
Refurbishment of steady state tokamak (SST-1) primarily focused at addressing the issues and bottle-necks involving various subsystems of SST-1 as observed during earlier commis- sioning attempts, have progressed significantly. Under the refurbishment spectrum, all joints in the superconducting magnet system have been re-fabricated as low DC leak tight joint resistances, all toroidal field (TF) magnets have been equipped with 5 K radiation shields on the inner side and successfully tested for their rated parameters in cold under nominal currents, all vessel sectors and modules have been baked and tested under representative conditions, supporting helium and ni- trogen cryogenic facilities have been made 〉 99% reliable in various envisaged operating scenarios of SST-1. The reassemblies of the critical subsystems of the SST-1 machine shell have progressed aggressively and are nearing completion. Auxiliaries such as the baking facility for the vacuum vessel and first wall components, current leads assembly distributions, synchronized timing sys- tem, reliable data acquisition and plasma control systems as well as essential diagnostics have also been readied towards the first plasma. A detailed engineering validation of the assembled SST-1 machine shell including field error measurements has been planned prior to first plasma attempts.
Refurbishment of steady state tokamak (SST-1) primarily focused at addressing the issues and bottle-necks involving various subsystems of SST-1 as observed during earlier commis- sioning attempts, have progressed significantly. Under the refurbishment spectrum, all joints in the superconducting magnet system have been re-fabricated as low DC leak tight joint resistances, all toroidal field (TF) magnets have been equipped with 5 K radiation shields on the inner side and successfully tested for their rated parameters in cold under nominal currents, all vessel sectors and modules have been baked and tested under representative conditions, supporting helium and ni- trogen cryogenic facilities have been made 〉 99% reliable in various envisaged operating scenarios of SST-1. The reassemblies of the critical subsystems of the SST-1 machine shell have progressed aggressively and are nearing completion. Auxiliaries such as the baking facility for the vacuum vessel and first wall components, current leads assembly distributions, synchronized timing sys- tem, reliable data acquisition and plasma control systems as well as essential diagnostics have also been readied towards the first plasma. A detailed engineering validation of the assembled SST-1 machine shell including field error measurements has been planned prior to first plasma attempts.