期刊文献+

一维双曲系统高分辨率波传播算法研究

High resolution wave propagation algorithm for one dimensional hyperbolic system
原文传递
导出
摘要 本文发展了波传播理论算法,通过Riemann求解器和高阶WENO空间重构得到间断跳跃.根据波传播的物理性质能够处理双曲系统的振荡以及各物理量的守恒问题,相比于其他的高分辨率数值模拟方法,不仅合理降低了耗散,清晰地捕捉到激波间断,并且提出间断判断因子,在保持精度的前提下,使计算效率显著提高.通过数值模拟欧拉方程的Sod问题和Lax问题,验证该方法在处理双曲系统间断问题上有广泛适用性和优越性.通过比较CPU时间,验证了加入判断因子后计算效率明显提高. In this paper, wave propagation algorithm was developed and discontinuity was solved by the Riemann solver and high order WENO spatial reconstruction. This method is able to handle the oscillation and the physical variables conservation of the hyperbolic systems on the basis of the physical properties of wave propagation. It can not only reduce the dissipation and capture the shock wave and discontinuity clearly compared to other high resolution numerical methods, but also make the calculation efficiency improving obviously through putting forward the discontinuous judgment factors on the premise of accuracy unchanged. This method has demonstrated the wide applicability and advantageous properties when dealing with hyperbolic system through numerical examples, including Sod problem and Lax problem of Euler equations. Calculation efficiency was obviously improved after introducing judgment factors.
出处 《中国科学:物理学、力学、天文学》 CSCD 北大核心 2013年第3期283-288,共6页 Scientia Sinica Physica,Mechanica & Astronomica
基金 国家自然科学基金资助项目(批准号:11072025 11032002)
关键词 高分辨率 波传播算法 判断因子 high resolution, wave propagation, judgment factors
  • 相关文献

参考文献2

二级参考文献19

  • 1NING Jianguo1 & CHEN Longwei1,2 1. National Key Laboratory of Protection and Control of Explosive Disaster, Beijing Institute of Technology, Beijing 100081, China,2. The Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China Correspondence should be addressed to Ning Jianguo.Fuzzy interface treatment in Eulerian method[J].Science China(Technological Sciences),2004,47(5):550-568. 被引量:40
  • 2Williams F A. Combustion Theory[M]. 2nd ed. Reading, Massachusetts:Addison-Wesley, 1985.
  • 3Harten A, Engquist B, Osher S, et al. Uniformly High Order Accurate Essentially Non-Oscillatory Schemes, Ill [J]. J Comput Phys,1987,71(2) :231-303.
  • 4Shu C W,Osher S. Efficient Implementation of Essentially Non-Oscillatory Shock-Capturing Schemes[J].J Comput Phys,1988,77(2) :439-471.
  • 5Shu C W, Osher S. Efficient Implementation of Essentially non-Oscillatory Shock-Capturing Schemes, Ⅱ [J]. J Comput Phys,1989,83(1) :32-78.
  • 6Jiang G L, Shu C W. Efficient Implementation of Weighted ENO Schemes [J]. J Comput Phys, 1996,126 (1) :200-212.
  • 7Schoffel S U, Ebert F. Numerical Analysis Concerning the Spatial Dynamics of an Initially Plane Gaseous ZND Detonation[J]. Shock Waves, 1988,114 : 3-31.
  • 8Gaki S,Fujiwara T. Numerical Analysis of Two-Dimensional No Steady Detonations [J]. AIAA Journal, 1978,16: 73-77.
  • 9Lefebvre M H. Simulation of Cellular Structure in a Detonation Wave [J]. Shock Waves, 1991,153 :64-77.
  • 10胡湘渝.气相爆轰波结构研究[R].北京:中国科学院力学研究所,2001.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部