期刊文献+

基于数学形态学的月海圆形撞击坑自动识别方法 被引量:13

Automatic identification of circular mare craters based on mathematical morphology
原文传递
导出
摘要 撞击坑是月球表面最为常见的地质单元,是研究月球地质演化历史的重要对象,也是月球地质定年的基本依据,因此撞击坑识别具有重要意义.本文根据嫦娥一号采集的月球CCD图像,基于数学形态学方法对撞击坑进行自动识别提取研究.在CCD图像中,撞击坑边缘的灰度变化明显,梯度较大,由此可以计算获取撞击坑的边缘形态;一般情况下,依据图像灰度梯度突变,通过边缘检测得到的撞击坑边缘比较粗糙、不连续,而且有断口和小洞.根据数学形态学的基本思想——用具有一定形态的结构元素去量度和提取图像中的对应形状,对识别出来的边缘作进一步处理,可得到较光滑、连续的撞击坑边缘弧,从而能方便地拟合出撞击坑边缘,并获得撞击坑的直径与位置.用数学形态学进行撞击坑识别与提取的主要步骤是:首先对CCD影像计算灰度的梯度,得到梯度图像,然后进行二值化,再使用数学形态学分离出边缘,最后用圆形对撞击坑进行拟合并计算出撞击坑的位置和直径.本文分别对月海和月陆地区进行撞击坑识别实验,结果表明,我们设计的算法能够识别的最小撞击坑直径为10个像素.其中月海区域撞击坑识别准确可靠;而月陆区域岩性差异大、地形起伏,造成CCD图像背景变化较大,其识别效果相对差一些,有待进一步改善. Identification of lunar crater is very significant, because the crater is not only the most common geological unit on the surface of the moon, but also an important object to study lunar geological evolution history and the fundamental basis of lunar geological dating. This paper conducts to recognize and extract the craters automatically based on mathematical morphology, from the lunar CCD image acquired by the Chang'e I satellite. The grayscale of the crater rims vary obviously in the CCD image, and their gradient are large, which can be calculated to obtain the shape of crater rim. In general, results of crater rims extracted by edge detection based on sharp grayscale gradient of image are discontinuous and rough, and also have gaps and holes. Some processings are further done to take the smooth and continuous arcs of crater rims, by measuring and extracting the corresponding shape from the image with a certain form of structural elements according to the basic idea of mathematical morphology. And then processed arcs may be used to fit the rims of craters conveniently and to obtain the diameters and locations of craters. The algorithm based on mathematical morphology for crater identification is as follows: firstly, we calculate the gradient of grayscale of the CCD image to form a gradient image, and binarize it; then separate the rims by mathematical morphology; finally extract the sizes and locations of craters by fitting rims with circles. In this paper, experiments on identification of craters in lunar mare and terra area show that the algorithm designed by authors may identify the crater with smallest diameter of 10 pixels. The identification of mare craters is accurate and reliable, while of terra craters is a little worse, due to big grayscale variety in CCD image background caused by big lithological differences and fluctuant topography, so we need a futher study on improvement of algorithm.
出处 《中国科学:物理学、力学、天文学》 CSCD 北大核心 2013年第3期324-332,共9页 Scientia Sinica Physica,Mechanica & Astronomica
基金 国家高技术研究发展计划(编号:2010AA12220102) 国家自然科学基金(批准号:41174049)资助项目
关键词 撞击坑 自动识别 边缘提取 月球 crater, automatic identification, edge extraction, lunar
  • 相关文献

参考文献19

  • 1Neukum G, Ivanov B A, Hartmann W K. Cratering records in the inner solar system in relation to the Lunar reference system. Space Sci Rev, 2001, 96(1-4): 55-86.
  • 2Neukum G, K6nig B, Arkani-Hamed J. A study of lunar impact crater size-distributions. The Moon, 1975, 12(2): 201-229.
  • 3St6ffler D, Ryder G, Ivanov B A, et al. Cratering history and lunar chronology. Rev Mineral Geochem, 2006, 60:519-596.
  • 4Kim J R, Muller J P. Impact crater detection on optical images and DEMs. In: Proceedings of ISPRS WG IV/9: Extraterrestrial Mapping Workshop "Advances in Planetary Mapping 2003". Houston: Lunar and Planetary Institute, 2003.
  • 5Matsumoto N, Asada N, Demura H. Automatic crater recognition on digital terrain model. In: Proceedings of 36th Annual Lunar and Planetary Science Conference. League City: Lunar and Planetary Science, 2005.14-18.
  • 6Zhou Q, Zhu P M, Jin D, et al. A method of identifying and extracting craters based on lunar surface DEM data. In: Proceedings of Global Lunar Conference: 1 lth ILEWG Conference on Exploration and Utilization of the Moon (ICEUM 11). Beijing: ICEUM11 Committee, 2010.
  • 7Honda R, Konishi O, Azuma R, et al. Data mining system for planetary images-crater detection and categorization. In: Proceedings of the International Workshop on Machine Learning of Spatial Knowledge in conjunction with ICML. Stanford: The workshop, 2000. 103-108.
  • 8Salamuniccar G, Loncaric S. Method for crater detection from martian digital topography data using gradient value/orientation, morphometry, vote analysis, slip tuning, and calibration. IEEE Trans Geosci Remote Sens, 2010, 48(5): 2317-2329.
  • 9Burl M C, Stough T, Colwell W, et al. Automated detection of craters and other geological features. In: Proceedings of 6th International Symposium on Artificial Intelligence, Robotics and Automation in Space. Montreal : i-SAIRAS Committee, 2001.
  • 10Michael G G. Coordinate registration by automated crater recognition. Planet Space Sci, 2003, 51(9-10): 563-568.

二级参考文献9

共引文献116

同被引文献382

引证文献13

二级引证文献349

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部