期刊文献+

沉积气压对纳米晶硅薄膜晶化率与电输运性能的影响 被引量:1

Growth and Property Characterization of B-Doped Nano-Crystalline Si Films
下载PDF
导出
摘要 采用热丝化学气相沉积法在不同气压(1~8 Pa)下沉积了p型纳米晶硅薄膜,研究了沉积气压对薄膜晶化率和电输运性能的影响。结果表明,薄膜的晶化率和平均晶粒尺寸随沉积气压升高而增大,而当沉积气压超过6 Pa后,薄膜的晶化率和平均晶粒尺寸会减小。当沉积气压由1 Pa升高到2 Pa时,BH3粒子迅速增多,且吸附方式是化学吸附,因而载流子浓度从8.9×1018cm-3迅速增大到6.252×1020cm-3。此时电导率从1.08 S/cm显著增加到29.5 S/cm,而电导激活能则从95.8meV急剧减小至18.6 meV,这是硼杂质掺杂浓度和薄膜的晶化率迅速增大所致。 The p-type, nano-erystalline hydrogen terminated silicon (nc-Si:H) films were grown by hot wire chemi- cal vapor deposition (HWCVD) on glass substrate. The influence of the deposition conditions, including the pressure, deposition rate, and ratio of HSi4 and H2 flow rates, on the microstmctures and electric properties of the films were evalu- ated. The results show that the pressure and B-doping significantly affect the microstructures and properties of the films. For example, as the pressure increased, the crystallinity and average grain size varied in an increase-decrease mode. As the pressure increased from 1 to 2 Pa, an increased number of BH3 were chemically adsorbed on Si surface, hence the cartier concentration increased from 8.9 x 10TM to 6.252 x 102o era-3. Besides, an increasing boron content also resulted in an increase of the conductivity from 1.08 to 29.5 S/cm and a sharp decrease of the activation energy from 95.8 to 18.6 meV.
出处 《真空科学与技术学报》 EI CAS CSCD 北大核心 2013年第2期110-114,共5页 Chinese Journal of Vacuum Science and Technology
基金 国家高技术研究发展计划(863)资助项目(2006AA03Z219) 江苏高校优势学科建设工程资助项目
关键词 沉积气压 纳米晶硅 热丝化学气相沉积 晶化率 电输运性能 Deposition pressure, Nanocrystalline silicon, HWCVD, CrystaUinity, Electrical transport property
  • 相关文献

参考文献15

  • 1Das D, Bhattacharya K. Journal of Applied Physics[J] ,2006, 100:103701.
  • 2Saleh R,Niekel N H. Thin Solid Films[J],2003,427(1-2): 266 - 269.
  • 3王权,胡然,丁建宁,何宇亮.衬底对PECVD法生长氢化纳米硅薄膜的影响[J].真空科学与技术学报,2011,31(3):267-271. 被引量:4
  • 4Gogoi P, Jha H S, Agm'wal P. THin Solid Films[J],2010, 518:6818 - 6828.
  • 5Gogoi P, Jha H S, Agarwal P.Thin Solid Films[J],2011, 519:4506 - 4510.
  • 6Seto J Y W. Journal of Applied Physics[J], 1975,46( 12): 5247 - 5254.
  • 7Hu G Y, O' Connell R F, He Y L, et al. Journal of Applied Physics [ J], 1995,78(6) : 3945 - 3948.
  • 8Kasap S, Capper P. Springer Publication[ M]. USA,2006:663.
  • 9Bakr N A,Funde A M,Waman V S, et al. Journal of Physics and Chemistry of Solids[J] ,2011,72:685 - 691.
  • 10Edelberg E, Bergh S, Naone R, et al. Journal of Applied Physics[ J], 1997,81 : 2410.

二级参考文献20

  • 1He Y,Yin C,Cheng G,et al.J Appl Phys[J] ,1994,75 (2):797-803.
  • 2He Y,Wei Y,Zheng G,et al.J Appl Phys[J] ,1997,82(7):3408-3413.
  • 3Chen X,Shen W,He Y.J Appl Phys[J] ,2005,97:024305.
  • 4Vach H,Brulin Q.Phys Rev Lett[J] ,2005,95:165502.
  • 5CullisA,Canham L,Calcott P.J Appl Phys[J] ,1997,82(3):909-965.
  • 6Aberle A.Thin Solid Films[J] ,2006,511 -512:26-34.
  • 7Cheng I,Wagner S.Appl Phys Lett[J] ,2002,80(3):440-443.
  • 8Meirav U,Kastner M,Wind S.Phys Rev Lett[J] ,1990,65:771-774.
  • 9Han D,Lorentzen J,Weinberg J,et al.J Appl Phys[J] ,2003,94(51):293O-2936.
  • 10Suryanayana C.Grant Norton M[M].New York:Plenum Press,1998:208-215.

共引文献3

同被引文献10

  • 1Neto A He, Guinea F, Peres N M R, et al. The Electronic Properties of Graphene[J] . Reviews of Modem Physics, 2009 , 81 (1) : 109 - 162.
  • 2Balandin A A, Ghosh S, Bao W, et al. Superior Thermal Conductivity of Single-layer Graphene [J] . Nano Letters, 2008, 8 (3):902 - 907.
  • 3Lee C, Wei X, Kysar J W, et al. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene [J] . Science,2008,321 (5887) :385 - 388.
  • 4Hernandez Y, Nicolosi V, Lotya M, et al. High-Yield Production of Graphene by Liquid-Phase Exfoliation of Craphitej J]. Nature Nanotechnology, 2008 ,3 (9) : 563 - 568.
  • 5Simonis P, Goffaux C, Thiry P A, et al. SI'M Study of a Grain Boundary in Graphite[J]. Surface Science, 2002, 511 ( 1) :319 - 322.
  • 6Cervenka J, Flipse C F J. Structural and Electronic Properties of Grain Boundaries in Graphite: Planes of Periodically Distributed Point Defects[J]. Physical Review, 2009, B79( 19): 195429.
  • 7Yazyev 0 V, Louie S G. Topological Defects in Graphene: Dislocations and Grain . Boundaries [J]. Physical Review, 2010,881(19):195420.
  • 8Capasso A, Placidi E, Zhan H F, et al. Graphene Ripples Generated by Grain Boundaries in Highly Ordered Pyrolytic Graphite[J]. Carbon,2014,68:330 - 336.
  • 9Grantab R, Shenoy VB, Ruoff R S. Anomalous Strength Characteristics of Tilt Grain Boundaries in Graphene [J] . Science, 2010, 330(6006) :946 - 948.
  • 10Gross L, Mohn F, Moll N, et al. Bond-Order Discrimination by Atomic Force Microscopy[J]. Science, 2012, 337(6100) : 1326- 1329.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部