期刊文献+

Emissions of polycyclic aromatic hydrocarbons from coking industries in China 被引量:19

Emissions of polycyclic aromatic hydrocarbons from coking industries in China
原文传递
导出
摘要 This study set out to assess the characteristics of polycyclic aromatic hydrocarbon (PAH) emission from coking industries, with field samplings conducted at four typical coke plants. For each selected plant, stack flue gas samples were collected during processes that included charging coal into the ovens (CC), pushing coke (PC) and the combustion of coke-oven gas (CG). Sixteen individual PAHs on the US EPA priority list were analyzed by gas chromatography/mass spectrometry (GC/MS). Results showed that the total PAH concentrations in the flue gas ranged from 45.776 to 414.874 μg/m3, with the highest emission level for CC (359.545μg/m3), The concentration of PAH emitted from the CC process in CP1 (stamp charging) was lower than that from CP3 and CP4 (top charging). Low-molecular-weight PAHs (i.e., two- to three-ring PAHs) were predominant contributors to the total PAH contents, and Nap, AcPy, Flu, PhA, and AnT were found to be the most abundant ones. Total BaPeq concentrations for CC (2.248 μg/m3) were higher than those for PC ( 1.838 μg/m3 ) and CG (1.082 μg/m3 ), and DbA was an important contributor to carcinogenic risk as BaP in emissions from coking processes. Particulate PAH accounted for more than 20% of the total BaPeq concentrations, which were significantly higher than the corresponding contributions to the total PAH mass concentration (5%). Both particulate and gaseous PAH should be taken into consideration when the potential toxicity risk of PAH pollution during coking processes is assessed. The mean total-PAH emission factors were 346.132 and 93.173μg/kg for CC and PC, respectively. This study set out to assess the characteristics of polycyclic aromatic hydrocarbon (PAH) emission from coking industries, with field samplings conducted at four typical coke plants. For each selected plant, stack flue gas samples were collected during processes that included charging coal into the ovens (CC), pushing coke (PC) and the combustion of coke-oven gas (CG). Sixteen individual PAHs on the US EPA priority list were analyzed by gas chromatography/mass spectrometry (GC/MS). Results showed that the total PAH concentrations in the flue gas ranged from 45.776 to 414.874 μg/m3, with the highest emission level for CC (359.545μg/m3), The concentration of PAH emitted from the CC process in CP1 (stamp charging) was lower than that from CP3 and CP4 (top charging). Low-molecular-weight PAHs (i.e., two- to three-ring PAHs) were predominant contributors to the total PAH contents, and Nap, AcPy, Flu, PhA, and AnT were found to be the most abundant ones. Total BaPeq concentrations for CC (2.248 μg/m3) were higher than those for PC ( 1.838 μg/m3 ) and CG (1.082 μg/m3 ), and DbA was an important contributor to carcinogenic risk as BaP in emissions from coking processes. Particulate PAH accounted for more than 20% of the total BaPeq concentrations, which were significantly higher than the corresponding contributions to the total PAH mass concentration (5%). Both particulate and gaseous PAH should be taken into consideration when the potential toxicity risk of PAH pollution during coking processes is assessed. The mean total-PAH emission factors were 346.132 and 93.173μg/kg for CC and PC, respectively.
出处 《Particuology》 SCIE EI CAS CSCD 2013年第1期86-93,共8页 颗粒学报(英文版)
基金 supported jointly by the R&D Special Fund for Public Welfare Industry of China(200809027) the National Natural Science Foundation of China(NSFC)(No. 41173002)
关键词 PAH Coking Stack flue gas Emission factor PAH Coking Stack flue gas Emission factor
  • 相关文献

参考文献1

二级参考文献8

共引文献37

同被引文献247

引证文献19

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部