期刊文献+

一种改进的自适应混合高斯建模算法 被引量:1

A Modified Self-adaptive Gaussian Mixture Modeling Algorithm
下载PDF
导出
摘要 车辆识别系统对于智能交通系统具有重要的意义,也是其他技术实现或判决的重要基础之一。混合高斯模型在应对背景中存在扰动的情况时具有明显的优势,但传统的混合高斯建模算法适应场景突变的能力不强,容易产生较长时间的虚影。本文在传统算法的基础上,对背景更新过程做了改进,从而可以快速地去除不再符合要求的背景模型。实验表明,在光照发生变化或摄像头轻微抖动等情况下具有良好的自适应性,配合阴影去除算法将大幅提高车辆识别的准确率。 Vehicle identification system has significant implication for intelligent transportation systems which is also one of the foundations of other related technology. The traditional Gaussian mixture model has obvious advantages in dealing with the background disturbance, but lack of ability to adapt to the scene mutation and avoid ghost for a long time. Based on the traditional method, this paper improves the updating formula to remove the undesirable background model quickly. As the experiments show, the algorithm can significantly improve the accuracy of the Vehicle Identification and has a good self - adaptability with shadow removal algorithm under the conditions of illumination changes or camera jitter.
出处 《无线通信技术》 2013年第1期14-18,共5页 Wireless Communication Technology
关键词 智能交通 混合高斯建模 阴影检测 ITS Gaussian mixture model shadow detection
  • 相关文献

参考文献8

  • 1黄桂田,龚六堂,张全升.中国物联网发展报告[M].北京:社会科学文献出版社,2011.
  • 2鲍征.基于TMS320DM642的智能交通监控系统研究[J].2008,6:17-18.
  • 3Pushkar Gorur, Bharadwaj Amrutur. Speeded up Gaussi- an Mixture Model Algorithm for Background Subtraction [ C ]. 8th IEEE International Conference on Advanced Video and Signal - Based Surveillance. 2011 : 386 - 391.
  • 4Sagrebin, Maria, Pauli Josef. Real - time moving object detection for video surveillance [ C ]. 6th IEEE Intema- tional Conference on Advanced Video and Signal Based Surveillance. 2009:31 - 36.
  • 5田浩,葛秀慧,王顶等.数字图像处理原理与应用[M].清华大学出版社.2007.
  • 6N. Armanfard, M. Komeili. A non- parametric pixel- based background modeling for dynamic scenes [ J ]. Ad- vances in Computational Tools for Engineering Applica- tions, 2009:369 - 373.
  • 7Hao Zhou, Xuejie Zhang, Yun Gao, Pengfei Yu. Video Background Subtracion Using Improved Adaptive - K Gaussian Mixture Model[ C ]. 2010 3rd IEEE Internation- al Conference on Advanced Computer Theory and Engi- neering(ICACTE) : 363 - 366.
  • 8罗欣.基于图像处理技术的车辆检测流量统计技术研究[J].2005-6:28-29.

共引文献1

同被引文献14

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部