摘要
提出一维谐振子基本积分的概念,并利用它们构造其他积分.将上述概念和方法推广到多维谐振子,利用直接构造法证明不同类型的二维谐振子都存在三个与时间无关的独立的第一积分,n维谐振子系统存在2n-1个与时间无关的独立的第一积分.讨论了分振动频率比为有理数和无理数的二维非对称谐振子的特征.
A concept of fundamental integrals of one-dimensional harmonic oscillator is presented, and other integrals can be constructed by use of fundamental integrals. The above concept and method are extended to multidimensional harmonic oscillators. By directly constructing other integrals from the fundamental integrals, it is proved that there are three independent time-independent integrals for all kinds of two-dimensional harmonic oscillators and there are 2n-1 independent time-independent integrals for n-dimensional harmonic oscillators. The characteristics of the anisotropic two-dimensional harmonic oscillator is discussed when the ratio between two frequencies is rational or irrational number.
出处
《物理学报》
SCIE
EI
CAS
CSCD
北大核心
2013年第6期315-320,共6页
Acta Physica Sinica
关键词
谐振子
第一积分
基本积分
不含时积分
harmonic oscillators first integral fundamental integral time-independent integral