期刊文献+

掩膜板凸出环隔离压缩式纳米压印施压气体的研究 被引量:2

Analysis of gas isolation by prominent O-ring on the mold in compressional gas cushion press nanoimprint lithography
原文传递
导出
摘要 在半导体微纳加工技术中,纳米压印由于具备低成本、高产出、超高分辨率等诸多优势而备受研究者和半导体厂商的青睐,有望成为下一代光刻技术的重要备选支撑技术之一.然而在其施压流程中,由于气体诱捕或陷入所造成的气泡缺陷问题直接关系到图案复制的成功率和完整性,因此避免气泡缺陷,阻止气泡进入模穴是亟待解决的关键问题.提出一种适用于在气体环境中进行气压压缩式纳米压印工艺并避免气体进入掩膜板基板间隙的方法.采用带有刻蚀一定宽度凸出环的掩膜板,凸出环与基板形成环板毛细缝隙,图形转移介质流体在其中形成毛细液桥,使掩膜板-介质-基板形成独立的封闭腔,转移介质黏附力所产生的静摩擦力及介质流体表面张力所诱导的毛细力抵抗施压气体,有效地阻止气体进入空穴形成气泡缺陷.通过理论解析推导求出针对具有不同表面特性转移介质流体的凸出环有效宽度,为掩膜板制备提供理论依据. Nanoimprint lithography has the advantages of low-cost, high-throughput, ultrahigh resolution, which could make it one of the next generation lithography technologies. However, the bubble-defect is always a problem which may damage the duplicate patterns, so it is an urgent issue to propose effective solutions. A novel methods, which is suitable for compressional gas cushion press nanoimprint lithography in gas atmosphere and could prevent gas from entering the gap between mold and substrate, is presented here. The annular plate capillary gap formed between the smooth substrate and the prominent O-ring processed by etching the original mold would be filled with the fluid medium. The capillary liquid bridge between the O-ring and substrate produces a closed cavity. The stiction induced by adhesion force and the capillary force induced by air-liquid surface tension could resist the compressed gas and avoid the bubble defect. The effective widths of the prominent O-ring, which are different for various fluids with different surface properties, are deduced by theory analysis. The analysis results provide theoretical basis for the preparation of the mold.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2013年第6期428-436,共9页 Acta Physica Sinica
基金 国家自然科学基金(批准号:51175479)资助的课题~~
关键词 纳米压印 凸出环 毛细液桥 静摩擦力 nanoimprint lithography prominent O-ring capillary liquid bridge stiction
  • 相关文献

参考文献4

二级参考文献54

  • 1陈雷明,李培刚,符秀丽,张海英,L.H.Li,唐为华.FIB快速加工纳米孔点阵的新方法[J].物理学报,2005,54(2):582-586. 被引量:4
  • 2de Gennes P G 1985 Rev. Mod. Phys. 57 827.
  • 3Wenzel R N 1936 J. Ind. Eng. Chem. 29 988.
  • 4Adam N K and Jessop G 1925 J. Chem. Soc. London 127 1863.
  • 5Kamusewitz H and Possart W 2003 Appl. Phys. A 76 899.
  • 6Borgs C, De Coninck J, Kotecky R and Zinque M 1995 Phys. Rev.Lett. 74 2292.
  • 7De Coninck J, Ruiz J and Miracle-Sole S 2002 Phys. Rev. E 6536139.
  • 8Mandelbret B B 1982 The Fractal Geometry of Nature (San Francisco: W.H. Freeman and Company, 1982).
  • 9Bico J, Tordeux C and Quere D 2002 Europhys. Lett. 55 214.
  • 10Good R J 1952 J. Am. Chem. Soc. 74 5041.

共引文献77

同被引文献46

  • 1Chou S Y, Krauss P R, Renstrom P J 1996 Science 272 85.
  • 2Colburn M, Suez I, Choi B J, Meissl M, Bailey T, Sreenivasan S V, Ekerdt J G, Grant Willson C 2001 J. Vac. Sci. Technol. B 19 2685.
  • 3Ding Y, Hyun Wook Ro, Alvine K J, Okerberg B C, Zhou J, Douglas J F, Karim A, Soles C L 2008 Adv. Funct. Mater. 18 1854.
  • 4Ding Y, Hyun Wook Ro, Douglas J F, Jones R L, Hine D R, Karim A, Soles C L 2007 Adv. Mater. 19 1377.
  • 5Tan C L, Yi Y X, Wang G P 2002 Acta Phys. Sin. 51 1063(in Chinese).
  • 6Takuya Ohzono, Hirohmi Watanabe, Richard Vendamme, Carina kamaga, Toyoki Kunitake, Teruya Ishihara, Masatsugu Shimomura 2007 Adv. Mater. 19 3229.
  • 7Ren L Y, Liu L R, Liu D A, Luan Z 2003 Acta Phys. Sin. 52 2788(in Chinese).
  • 8Jones R L, Tengjiao Hu, Soles C L, Lin E K, Reano R M, Pang S W, Casa D M 2006 Nano Letters 6 1728.
  • 9Zhao H J, Peng Y J, Tan Y 2009 Chin. Phys. B 18 2326.
  • 10Fuard D, Corinne, Farys V, Gourgon C, Schiavone P 2005 J. Vac. Sci. Technol. B 23 3069.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部