期刊文献+

基于符号化部分互信息熵的多参数生物电信号的耦合分析 被引量:4

Coupling analysis of multivariate bioelectricity signal based symbolic partial mutual information
原文传递
导出
摘要 提出了一种新的时间序列耦合信息分析方法——基于部分互信息符号化部分互信息熵.研究表明,多参量的生物电信号各参量间具有耦合关系,使用符号化的部分互信息能够很好地对生物电信号时间序列进行分析,从而获得其耦合程度.应用该算法对生物电信号计算并进行假设检验,结果表明清醒期的生物电信号耦合程度显著高于睡眠期,证明符号化部分互信息可以用来分析时间序列间的耦合信息,而且生物电信号的耦合程度可以作为度量一个物理过程是否处于活跃状态的参数,未来可以应用于临床医学以及生物电传感器等领域. Symbolic partial mutual information is proposed in this paper, which is based on partial mutual information. This algorithm can be used to analyse the coupling between multivariate time series. We use this method to treat and analyse the sleeping multivariate bioelectricity signal (MBS) and wake one, it turns out that the coupling of wake MBS is obviously bigger than that of sleeping MBS. Finally hypothesis testing is done to prove that this method works and the average energy dissipation can be used as a parameter to detect nonequilibrium.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2013年第6期491-495,共5页 Acta Physica Sinica
基金 国家自然科学基金(批准号:61271082 61201029 61102094) 江苏省自然科学基金(批准号:BK2011759 BK2011565)资助的课题~~
关键词 符号化 部分互信息熵 生物电信号 耦合 symbolic partial mutual information multivariate bioelectricity signal coupling
  • 相关文献

参考文献2

二级参考文献9

共引文献35

同被引文献29

  • 1Iasemidis L D,Shiau D S,Chaovalitwongse W,et al.Adaptive epileptic seizure prediction system[J].IEEE Transactions onBiomedical Engineering,2003,50(5):616-627.
  • 2Gadhoumi K,Lina J M,Gotman J.Discriminating preictal and interictal states in patients with temporal lobe epilepsy usingwavelet analysis of intracerebral EEG[J].Clinical Neurophysiology Official Journal of the International Federation of ClinicalNeurophysiology,2012,123(10):1906-1916.
  • 3Vejmelka M,Palus M.Inferring the directionality of coupling with conditional mutual information[J].Physical Review E Sta-tistical Nonlinear & Soft Matter Physics,2008,77(2):026214.
  • 4Schreiber T.Measuring information transfer[J].Physical Review Letters,2000,85(2):461-464.
  • 5Faes L,Nollo G.Decomposing the transfer entropy to quantify lag-specific Granger causality in cardiovascular variability[C]∥Inter-national Conference of the IEEE Engineering in Medicine and Biology Society.[S.l.]:IEEE,2013:5049-5052.
  • 6Eichler M.Graphical modelling of multivariate time series[J].Probability Theory and Related Fields,2012,153(1/2):233-268.
  • 7Kostelich E J.The analysis of chaotic time-series data[J].Systems & Control Letters,1997,31(5):313-319.
  • 8Wessel N,Ziehmann C,Kurths J,et al.Short-term forecasting of life-threatening cardiac arrhythmias based on symbolic dy-namics and finite-time growth rates[J].Physical Review E Statistical Physics Plasmas Fluids & Related InterdisciplinaryTopics,2000,61(1):733-739.
  • 9Staniek M,Lehnertz K.Symbolic transfer entropy[J].Physical Review Letters,2008,100(15):3136-3140.
  • 10Runge J,Heitzig J,Petoukhov V,et al.Escaping the curse of dimensionality in estimating multivariate transfer entropy[J].Physical Review Letters,2012,108(25):1-5.

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部