期刊文献+

平面凸体的等周亏格的上界估计

UPPER BOUND OF ISOPERIMETRIC DEFICIT FOR CONVEX BODY IN THE EUCLIDEAN PLANE
下载PDF
导出
摘要 本文研究平面凸体的等周亏格的上界估计.利用文献[20]中的思想得到一些新的由凸体的周长、面积、最小外接圆半径和最大内切圆半径表示的等周亏格的上界估计,推广了文献[20]中的结果. In this paper, we investigate the upper bound of isoperimetric deficit in the Euclidean plane. Following ideas in [20], we obtain some new upper bounds expressed by perimeter, area, the radius of minimum circumscribed disc and the radius of maximum inscribed disc of a convex body, which generalizes the results of [20].
作者 何刚 姜德烁
出处 《数学杂志》 CSCD 北大核心 2013年第2期349-353,共5页 Journal of Mathematics
基金 国家天元基金(项目号:11126324) 商丘师范学院青年骨干教师资助计划(2011GGJS01)
关键词 等周不等式 BONNESEN型不等式 凸体 等周亏格 isoperimetric inequality Bonnesen-style inequality convex body isoperimetric deficit
  • 相关文献

参考文献24

  • 1Bonnesen T. Les problems des isoprimtres et des ispiphanes [M]. Paris: Gauthier-Villars, 1929.
  • 2Bonnesen T, Fenchel W. Theorie der Konvexen KSeper [M]. Berlin, New York: Springer-Verlag, 1974.
  • 3任德鳞.积分几何学引论[M].上海:上海科学技术出版社,1988.
  • 4Banchoff T F, Pohl W F. A generalization of the isoperimetric inequality [J]. J. Diff. Geo., 1971, 6: 175-213.
  • 5Bokowski J, Heil E. Integral representation of quermassintegrals and Bonnesemstyle inequalities [J]. Arch. Math., 1986, 47: 79-89.
  • 6Burago Yu D, Zalgaller V A. Geometric inequalities [M]. Berlin, Heidelberg: Springer-Verlag, 1988.
  • 7Diskant V. A generalization of Bonnesen's inequalities [J]. Soviet Math. Dokl., 1973, 14: 1728-1731.
  • 8Gardner R. Geometric tomography [M]. New York: Cambridge Univ. Press, 1995.
  • 9Gysin L. The isoperimetric inequality for nonsimple closed curves [J]. Proc. Amer. Math. Soc., 1993, 118(1): 197 203.
  • 10Osserman R. The isoperimetric inequality [J]. Bull. Amer. Math. Soc., 1978, 84: 1182-1238.

二级参考文献27

  • 1LI Ming & ZHOU JiaZu School of Mathematics and Statistics,Southwest University,Chongqing 400715,China.An isoperimetric deficit upper bound of the convex domain in a surface of constant curvature[J].Science China Mathematics,2010,53(8):1941-1946. 被引量:17
  • 2Osserman R., Bonnesen-style isoperimetric inequality, Amer. Math. Monthly, 1979, 86: 1-29.
  • 3Ren D., Topics in integral geometry, Sigapore: World Scientific, 1994.
  • 4Santalo L. A., Integral geometry and geometric probability, Reading, Mass, Addison-Wesley, 1976.
  • 5Zhou J., On the Willmore deficit of convex surfaces, Lectures in Applied Mathematics of Amer. Math. Soc., 1994, 30: 279-287.
  • 6Hsiang W. Y., An elementary proof of the isoperimetric problem, Ann. of Math., 2002, 23A(1): 7-12.
  • 7Zhang G., A sufficient condition for one convex body containing another, Chin. Ann. of Math., 1988, 4: 447-451.
  • 8Zhang G., Zhou J., Containment measures in integral geometry, Integral geometry and Convexity, Singapore: World Scientific, 2006, 153-168.
  • 9Zhou J., A kinematic formula and analogous of Hadwiger's theorem in space, Contemporary Mathematics, 1992, 140: 159-167.
  • 10Zhou J., The sufficient condition for a convex domain to contain another in R^4, Proc. Amer. Math. Soc., 1994, 212: 907-913.

共引文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部