摘要
研究L-子坡代数范畴L-SInc的性质,首先给出了L-子坡代数范畴的定义,证明了其为坡代数范畴上的拓扑范畴,给出了其中等子和乘积的构造,证明了它有拉回.其次,定义了坡代数L-余塔的概念,以及由所有坡代数L-余塔构成的范畴IncCL,证明了在一定条件下,范畴L-SInc与范畴IncCL同构.
Category of L-subinclines and its properties are studied.Firstly,the category of L-subinclines L-SInc is defined,and it is proved to be a topological category on the category of inclines,the formation of equalizer and product in L-SInc are given,and it is proved that the category L-SInc has pull back.Secondly,the consept of L-cotower of inclines and the category of them are defined,it is proved that,the category L-SInc and category IncCL are isomorphic under some appropriate condition.
出处
《云南大学学报(自然科学版)》
CAS
CSCD
北大核心
2013年第2期129-136,共8页
Journal of Yunnan University(Natural Sciences Edition)
基金
国家自然科学基金项目(11071151)
陕西省教育厅专项科研计划项目(11JK0484)
西安工业大学校长基金项目(XAG-DXJJ1029)
关键词
坡代数
L-子坡代数
拓扑范畴
等子
乘积
同构
incline
L-subincline
topological category
equalizer
product
isomorphic