期刊文献+

WCCN聚类序列核函数在话者识别中的应用 被引量:1

A novel WCCN clustering kernel applied in speaker recognition
原文传递
导出
摘要 针对说话人确认系统中GMM超向量建模计算复杂度高以及易受信道干扰的问题,提出一种新型的基于Bhattacharyya距离聚类的WCCN序列核函数算法.首先计算话者GMM模型之间的Bhattacharyya距离,根据该Bhattacharyya距离对话者模型进行聚类,得到聚类中心模型;紧接着对聚类中心模型的均值向量进行MAP自适应,进而生成超向量序列核函数;最后采用WCCN平滑归一化技术对序列核函数进行信道补偿,抑制噪音和信道畸变对核函数的影响.将该Bhattacharyya聚类WCCN核函数应用到SVM说话人确认系统,仿真实验结果表明该核函数可以有效地提高系统的识别准确率和识别速度. A novel WCCN kernel based on Bhattacharyya distance clustering algorithm was proposed in this paper in order to reduce the computation complexity of GMM super-vector,meanwhile the channel interference was removed from speaker verification system.Firstly,the GMM models of speakers were clustered based on Bhattacharyya distance,and clustering center models were obtained.Then super-vector sequence kernel was generated by adapting only mean vectors of these clustering center models.Finally,WCCN was used to restrain the noise and channel distortion effection of this kernel.Our experiment results showed that our new kernel can improve the recognition accuracy and speed.
出处 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第2期167-172,共6页 Journal of Yunnan University(Natural Sciences Edition)
基金 甘肃省教育厅基金项目(1113-01)
关键词 语音识别 GMM超向量 BHATTACHARYYA距离 类内协方差归一化 支持向量机 speech recognition GMM super-vector Bhattacharyya distance within class covariance normalization support vector machine
  • 相关文献

参考文献9

  • 1侯风雷,王炳锡.基于说话人聚类和支持向量机的说话人确认研究[J].计算机应用,2002,22(10):33-35. 被引量:11
  • 2LONGWORTH C, GALES M. Combining derivative and para- metric kernels for speaker verification [ J ]. IEEE Trans Audio Speech Language Process ,2007,6 ( 1 ) :1-10.
  • 3CAMPBELL W, STURIM D, REYNOLDS D. Support vector machines using GMM supervectors for speaker verification [J]. IEEE Signal Process Itt,2006,13 (5):308-311.
  • 4陆亮.多信道条件下的说话人认证[D].北京:北京邮电大学.2009.
  • 5Vijendra Raj Apsingekar, PHILLIP L, LEON D E. Speaker model clustering for efficient speaker identification in largepopulation applications [ J]. IEEE Transactions on Audio, Speech, and Language Processing,2009,17 (4) :848-853.
  • 6LEE Kong-aik, YOU Chang-huai, LI Hai-zhou, et al. Using discrete probabilities with bhattacharyya measure for SVM - based speaker verification [ J ]. IEEE Transactions on Audio, Speech, and Language Processing, 2011,19 (4) : 861-869.
  • 7CHANG Huai-you, LEE Kong-aik , LI Hai-zhou. GMM - SVM Kernel with a Bhattacharyya - Based Distance for Speaker Rec- ognition [ J ]. IEEE Transactions on Audio, Speech, and Language Processing,2010,18 (6) : 1 300-1 312.
  • 8ANDREW O Hatch, Andreas Stolcke. Generalized linear kernels for one - versus - all classification: application to speaker recognition[ C ]. IEEE International Conference on Acoustics, Speech and Signal Processing, Toulouse, France, 2006, Volume 12:5 443-5 446.
  • 9MATEJKA P, BURGET L, SCHWARZ P, et al. STBU system for the NIST 2006 speaker recognition evaluation [ C ]. IEEE In- ternational Conference on Acoustics, Speech and Signal Processing, Honolulu, USA ,2007:221-224.

二级参考文献1

  • 1Vapnik V . N.The Nature of Statistical Learning Theory ( Second Edition)[]..1999

共引文献10

同被引文献9

  • 1Campbell W, Sturim D,Reynolds D. Support vector machines using GMM supervectors for speaker verification. IEEE Signal Process Lett, 2006; 13 (5):308-311.
  • 2Longworth C, Gales M. Combining derivative and parametric kernels for speaker verification. IEEE Trans Audio, Speech Language Process, 2007; 6 (1) :1-10.
  • 3Hu Hao, Xu Mingxing, Wu Wei. GMM super-vector based SVM with spectral features for speech emotion recognition. USA: IEEE Interna- tional Conference on Acoustics, Speech and Signal Processing, 2007 ; 4:IV-413-1V-416.
  • 4Solomonoff A, Campbell W M, Boardman I. Advances in channel compensation for swn speaker recognition. International Conference on Acoustics, Speech, and Signal Processing. Pennsylvania, USA: IEEE, 2005 : 1-629-1-632.
  • 5Dehak N. Front-end factor analysis for speaker verification. Audio, Speech and Language Processing, 2011;19(4) : 788-798.
  • 6Gang L V, Zhao Heming. Joint factor analysis of channel mismateh in whispering speaker verification. Archives of Acoustics, 2012; 37 (4) :555-559.
  • 7McLaren M, Van Leeuwen D. Improved speaker reeoguition when using i-vectors from multiple speech sources. IEEE International Con- ference on Acoustics, Speech and Signal Processing, Prague, Czech Republic: IEEE, 2011 : 5460-5463.
  • 8栗志意,何亮,张卫强,刘加.基于鉴别性i-vector局部距离保持映射的说话人识别[J].清华大学学报(自然科学版),2012,52(5):598-601. 被引量:11
  • 9范冠杰,陈万培,陈才扣,王旻毅.一种融合WPCA与WLDA的人脸识别方法[J].无线电通信技术,2013,39(5):89-92. 被引量:3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部