期刊文献+

贮箱内低温推进剂汽化过程的CFD数值仿真 被引量:10

CFD numerical simulation of cryogenic propellant vaporization in tank
下载PDF
导出
摘要 为研究贮箱内低温推进剂相变对推进剂温度和贮箱压力的影响,对贮箱内的传热传质过程进行了仿真.仿真涉及的物理过程包括贮箱与外界环境的换热、推进剂的自然对流、推进剂与贮箱内壁面的换热以及低温推进剂的相变过程等.根据热力学平衡原理建立了低温推进剂相变模型,使用CFD(Computational Fluid Dynamic)方法对处于地面常压停放状态的液氢贮箱进行了450 s的仿真.研究表明随着贮箱壁面传热过程的稳定,推进剂的温度分布、流动状态以及相变情况会趋于稳定;通过仿真获得了推进剂单位时间的汽化量;影响相变的主要因素是贮箱壁面漏热以及推进剂自身的对流运动. Simulation on heat and mass transfer in propellant tank was performed to investigate influence of cryogenic propellant vaporization on tank pressure and propellant temperature.The simulation was concerned with heat transfer between propellant tank and external environment,propellant free convection,thermal exchange between propellant and inner tank wall surface,and cryogenic propellant phase transition.A propellant phase transformation model was built on the basis of thermodynamic equilibrium.Physical process of 450s in propellant tank during ground parking under atmospheric pressure was simulated using computational fluid dynamic(CFD) method.Simulation results reveal that the propellant temperature distribution,flow state and phase transition will tend to stable as propellant tank wall heat transfer stabilizes.The evaporation of propellant per unit time was obtained through simulation.And the main factors affecting the propellant phase transition are heat leak from tank walls and the propellant's own convection motion.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2013年第2期264-268,共5页 Journal of Beijing University of Aeronautics and Astronautics
关键词 推进剂贮箱 低温 相变 计算流体力学 数值仿真 propellant tank cryogenic phase transition computational fluid dynamic(CFD) numerical simulation
  • 相关文献

参考文献8

  • 1Zilliac G,Arif Karabeyoglu M. Modeling of propellant tank pres- surization[ R]. AIAA-2005-3549, 2005.
  • 2王赞社,顾兆林,冯诗愚,邱剑.低温推进剂贮箱增压过程的传热传质数学模拟[J].低温工程,2007(6):28-31. 被引量:13
  • 3Majumdar A, Steadman T. Numerical modeling of pressurization of a propellant tank [ R ]. AIAA-99-0879,1999.
  • 4代予东,赵红轩.运用数学方法模拟推进剂贮箱增压[J].火箭推进,2003,29(3):34-40. 被引量:6
  • 5Panzarella C H,Kassemi M. On the validity of purely thermody- namic descriptions of two-phase cryogenic fluid storage [ J ]. J FLuid Mech,2003,484: 41-68.
  • 6Panzarella C tf,Kassemi M. Self-pressurization of large spherical cryogenic tanks in space[ J]. Journal of Spacecraft and Rockets, 2005,42(2) : 299-308.
  • 7Cheng Xianghua, Li Yanzhong, Chen Erfeng, et al. Effect of re- turn inlet on thermal stratieation in a rocket tank[ J]. Journa1 of Thermophysics and Heat Transfer, 2010,24 ( 1 ) : 112-122.
  • 8徐济望 贾斗南.沸腾传热和气液两相流[M].北京:原子能出版社,2001.183-205.

二级参考文献10

  • 1代予东,赵红轩.运用数学方法模拟推进剂贮箱增压[J].火箭推进,2003,29(3):34-40. 被引量:6
  • 2张超,鲁雪生,田丽亭.火箭低温液体推进剂增压系统数学模型[J].低温与超导,2005,33(2):35-38. 被引量:17
  • 3[2]Ring E.Rocket Propellant and Pressurization System.Prentice-Hall,Upper Saddle River,NJ,1964,pp173-245.
  • 4[3]Epstein M.,Anderson R E.An Equation for the Prediction of Cryogenic Pressurant Requirement for Axisymmetric Propellant Tanks.Advanced in Cryogenic Engineering,Vol.13,New York,1968,pp207-214.
  • 5[4]Majumdar A,Steadman T.Numerical Modeling of Pressurization of a Propellant Tank,AIAA Paper 990879,1999.
  • 6[5]Reid R C,Prausintz J M,Poling B.E.The Properties of Gases and Liquids,4th ed.,McGraw-Hall,New York.1987.
  • 7李强,胡忠军,李青,等.低温液体推进剂增压过程计算模型[C].第七届制冷低温大会,2005:274-277.
  • 8E L 柯斯乐.[美]扩散-流体系统中的传质[M].北京:化学工业出版社.2002.
  • 9Crowl D A,Louvar J F. Chemical process safety-fundamentals with applications (second Edition). New jersey : Prentice-hall 2001.
  • 10化工部第四设计院主编.深冷技术(上册)[M].北京:燃料化学工业出版社,1973.

共引文献35

同被引文献78

引证文献10

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部