期刊文献+

微阵列数据分析和错误发现率 被引量:2

Microarray data analysis and false discovery rate
下载PDF
导出
摘要 目的:介绍微阵列数据的差异表达分析和基于错误发现率的多重假设检验。方法:通过t检验对一个关于前列腺癌的微阵列数据进行基因差异表达分析,采用BH程序进行错误发现率的控制和经验估计。结果:当错误发现率为0.05时通过BH程序得到21个差异表达基因;当以|t|≥3作为拒绝域时,得到105个基因,对应的错误发现率估计值为0.20。结论:相对传统的总体错误率,错误发现率更加适合于微阵列这种高维数据多重比较的错误控制;而且能同时控制或估计错误发现率。 Aim:To introduce the analysis of differential expression of microarray data and the multiple hypotheses testing based on the false discovery rate(FDR).Methods:The t test was used for the analysis of differentially expressed genes concerning prostate cancer microarray data.FDR controlled with the procedure of Benjamini and Hochberg(BH)was empirically estimated.Results:A total of 21 differentially expressed genes were obtained by the BH procedure with the FDR of 0.05;and 105 genes were obtained with an estimated FDR of 0.20 if the rejection region was |t|≥3.Conclusion:FDR is more appropriate for high-dimensional microarray data in multiple comparisons than family wise error rate;we can control and estimate the FDR at the same time.
出处 《郑州大学学报(医学版)》 CAS 北大核心 2013年第1期59-62,共4页 Journal of Zhengzhou University(Medical Sciences)
基金 江苏省教育厅高校哲学社会科学研究基金资助项目2010SJB790037 徐州医学院公共卫生学院科研课题资助项目201107 201115
关键词 微阵列数据 多重假设检验 错误发现率 控制和估计 前列腺癌 microarray data multiple hypotheses testing false discovery rate control and estimation prostate cancer
  • 相关文献

参考文献12

  • 1Johnstone IM,Titterington DM. Statistical challenges of high- dimensional data [ J ]. Philos Transact A Math Phys Eng Sci ,2009,367 ( 1906 ) :4237.
  • 2Bretz F,Hothorn T, Westfall P. Multiple comparisons using R [ M ]. London : Chapman & Hall, 2010 : 11.
  • 3Benjamini Y, Hochberg Y. Controlling the false discovery rate:A practical and powerful approach to multiple testing [ J 1. J Royal Statist Soc : Series B, 1995,57 ( 1 ) :28.
  • 4Efron B. Large-scale inference:empirical Bayes methods for estimation, testing, and prediction [ M ]. New York: Cam- bridge University Press ,2010:46.
  • 5Singh D, Febbo PG, Ross K, et al. Gene expression corre- lates of clinical prostate cancer behavior [ J ]. Cancer Cell, 2002,1 ( 2 ) : 203.
  • 6曾平,王婷.贝叶斯错误发现率[J].山东大学学报(医学版),2012,50(3):120-124. 被引量:2
  • 7王婷,曾平,黄水平,赵华硕.错误发现率及其扩展和应用[J].重庆医科大学学报,2011,36(12):1445-1448. 被引量:3
  • 8王婷,曾平,黄水平,赵华硕.错误发现率的经验估计和应用[J].郑州大学学报(医学版),2012,47(5):636-639. 被引量:2
  • 9R Development Core Team. R:A language and environment for statistical computing[ EB/OL1 . R Foundation for Statis- tical Computing, Vienna, Austria, 2007. URL http ://www. R-project. org.
  • 10荀鹏程,赵杨,易洪刚,柏建岭,于浩,陈峰.Permutation Test在假设检验中的应用[J].数理统计与管理,2006,25(5):616-621. 被引量:38

二级参考文献37

  • 1Bradley Efron ,朱钰 ,谢爱辉 ,郭晓烨 .贝叶斯学派统计学家,频率学派统计学家和科学家[J].统计与信息论坛,2005,20(4):108-112. 被引量:4
  • 2Schena M.Microarray analysis[M].New York:John Wiley & Sons,2003.1-10.
  • 3Lazar N.The statistical analysis of functional MRI data[M].New York:Springer,2008.165-210.
  • 4Benjamini Y,Hochberg Y.Controlling the false discovery rate:A practical and powerful approach to multiple testing[J].Journal of the Royal Statistical Society:Series B,1995,57(1):289-300.
  • 5Dudoit S,Shaffer J P,Boldrick J C.Multiple hypothesis testing in microarray experiments[J].Statistical Science,2003,18(1):71-103.
  • 6Singh D,Febbo P G,Ross K,et al.Gene expression correlates of clinical prostate cancer behavior[J].Cancer Cell,2002,1(2):203-209.
  • 7Bretz F,Hothorn T,Westfall P.Multiple comparisons using R[M].London:Chapman & Hall,2010.1-60.
  • 8Storey J D.The positive false discovery rate:A Bayesian interpretation and the q-value[J].Annals of Statistics,2003,31(6):2013-2035.
  • 9Storey J D.A direct approach to false discovery rates[J].Journal of the Royal Statistical Society:Series B,2002,64(3):479-498.
  • 10Efron B,Tibshirani R,Storey J D,et al.Empirical bayes analysis of a microarray experiment[J].Journal of the American Statistical Association,2001,96(456):1151-1160.

共引文献41

同被引文献16

  • 1荀鹏程,赵杨,柏建岭,易洪刚,于浩,陈峰.微阵列数据的多重比较[J].中国卫生统计,2006,23(1):5-8. 被引量:12
  • 2Ismal Ahmed, Franoise Haramburu, Annie Fourrier - R6glat, et al. Bayesian pharmacovigilance signal detection methods revisited in a nmltiple comparison setting [ J] , 2009, 28 (13) : 1774-1792.
  • 3Bate Andrew, Lindquist Marie, Edwards IR, et al. A bayesian neural network method for adverse drug reaction signal generation [ J]. European journal of clinical pharmacology, 1998, 54 (4) : 315-321.
  • 4Ahmed I, Dalmasso C, Hararnburu F, et al. False Discovery Rate Estimation for Frequentist Pharmacovigilance Signal Detection Meth- ods [J]. Biometrics, 2010, 66( 1 ): 301-309.
  • 5Benjamini Yoav, Hochberg Yosef. Controlling the false discovery rate: A practical and powerful approach to multiple testing [ J ]. Journal of the Royal Statistical Society. Series B (Methodological), 1995, 57(1) : 289-300.
  • 6Ahmed, F Thiessard, G Miremont-Salam6, et al. Phannacovigi- lance Data Mining with Methods Based on False Discovery Rates: A comparative Simulation Study [ J]. Clinical Pharmacology & Thera- peutics, 2010, 88(4): 492-498.
  • 7Ismal Ahmed, Frantz Thiessard, Ghada Miremont-Salame, et al. Early Detection of Pharmacovigilance Signals with Automated Meth- ods Based on False Discovery Rates-A Comparative Study [ J ]. Drug Safety, 2012, 35(6): 495-506.
  • 8李婵娟,王素珍,王陵,许金芳,夏结来.基于模拟数据库的药品不良反应信号检测方法比较[J].中国卫生统计,2009,26(2):124-127. 被引量:14
  • 9李运明,曹文君,陈长生.六种基因表达谱数据筛选差异表达基因方法的比较[J].中国卫生统计,2009,26(3):250-254. 被引量:4
  • 10罗宝章,钱轶峰,叶小飞,孙亚林,杜文民,贺佳.药物不良反应信号检测方法的现状与展望[J].药学服务与研究,2009,9(4):255-260. 被引量:36

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部