摘要
目的:介绍微阵列数据的差异表达分析和基于错误发现率的多重假设检验。方法:通过t检验对一个关于前列腺癌的微阵列数据进行基因差异表达分析,采用BH程序进行错误发现率的控制和经验估计。结果:当错误发现率为0.05时通过BH程序得到21个差异表达基因;当以|t|≥3作为拒绝域时,得到105个基因,对应的错误发现率估计值为0.20。结论:相对传统的总体错误率,错误发现率更加适合于微阵列这种高维数据多重比较的错误控制;而且能同时控制或估计错误发现率。
Aim:To introduce the analysis of differential expression of microarray data and the multiple hypotheses testing based on the false discovery rate(FDR).Methods:The t test was used for the analysis of differentially expressed genes concerning prostate cancer microarray data.FDR controlled with the procedure of Benjamini and Hochberg(BH)was empirically estimated.Results:A total of 21 differentially expressed genes were obtained by the BH procedure with the FDR of 0.05;and 105 genes were obtained with an estimated FDR of 0.20 if the rejection region was |t|≥3.Conclusion:FDR is more appropriate for high-dimensional microarray data in multiple comparisons than family wise error rate;we can control and estimate the FDR at the same time.
出处
《郑州大学学报(医学版)》
CAS
北大核心
2013年第1期59-62,共4页
Journal of Zhengzhou University(Medical Sciences)
基金
江苏省教育厅高校哲学社会科学研究基金资助项目2010SJB790037
徐州医学院公共卫生学院科研课题资助项目201107
201115
关键词
微阵列数据
多重假设检验
错误发现率
控制和估计
前列腺癌
microarray data
multiple hypotheses testing
false discovery rate
control and estimation
prostate cancer