摘要
G的k-(边)着色是一个映射π:E(G)→{1,2,…,k},使得G的相邻边没有相同的象.图G的色指数χ'(G)=min{k G有一个k-着色}.给出了最大次数为3的图的5种类型的四边形扩张变换,证明了这5种类型的变换保持图的临界性不变,并可利用这种变换构造出阶数较高的新的临界图.
The chromatic index χ′(G) of a graph G was the minimum number of colors required to color the edges of G so that different colors were received for two adjacent edges.Five quadrangle extension types of graphs of maximum degree 3 were given and the stable criticality of them was proved.Furthermore,it could be used to construct new critical graphs in higher color levels.
出处
《郑州大学学报(理学版)》
CAS
北大核心
2013年第1期30-33,共4页
Journal of Zhengzhou University:Natural Science Edition
基金
河南省科技厅自然科学基金资助项目
编号102400450471
关键词
临界图
边着色
色指数
四边形扩张
critical graph
edge-coloring
chromatic index
quadrangle extension