期刊文献+

基于组合拆分策略求解TSP的动态规划算法 被引量:4

Dynamic Programming Algorithm Based on Combination and Division Strategy for Solving TSP
下载PDF
导出
摘要 针对传统动态规划算法只能解决小规模旅行商问题(TSP)的不足,提出一种基于组合拆分策略的动态规划算法,通过5种不同的拆分策略将TSP序列拆分成若干段子序列,利用动态规划方法将子序列优化组合成新的TSP序列,重复该过程直到获得最优解散解。仿真结果表明,该算法能有效减小误差率,求解精确度较高,具有较低的计算复杂度和较好的稳健性。 Because of the deficiency that the typical dynamic programming algorithm can only solve the small-scale Traveling Salesman Problem(TSP), this paper proposes a new dynamic programming algorithm based on the combination and division. The whole sequence of TSP is divided into several parts by five strategies mentioned by the paper. Those parts are combined using the proposed dynamic programming algorithm to get a new better sequence. It repeats the process until it gets the optimum solution. Simulation results show that this algorithm with the higher solution accuracy can effectively reduce the error rate, and have low complexity and good robustness of the solution.
出处 《计算机工程》 CAS CSCD 2012年第13期185-187,191,共4页 Computer Engineering
基金 国家自然科学基金资助项目(60874074) 浙江省自然科学基金资助项目(Y1090592)
关键词 旅行商问题 动态规划 序列拆分 序列组合 组合优化 Traveling Salesman Problem(TSP) dynamic programming sequence division sequence combination combinatorial optimization
  • 相关文献

参考文献8

二级参考文献19

  • 1邹鹏,周智,江贺,陈国良,顾钧.求解旅行商问题的循环局部搜索算法的运行时间和性能分布分析[J].计算机学报,2006,29(1):92-99. 被引量:24
  • 2Lin W,Cybern Syst,1995年,26卷,387页
  • 3康立山 谢云 尤矢勇.模拟退火算法[M].北京:科学出版社,1994.150-151.
  • 4Eberhart R C, Kennedy J. A New Optimizer Using Particles Swarm Theory[C]//Proc. of the 6th Int'l Symposium off Micro Machine and Human Science. Nagoya, Japan: [s. n.], 1995.
  • 5Shi Yuhui, Eberhart R C, Fuzzy Adaptive Particle Swarm Optimization[C]//Proc. of Congress on Evolutionary Computation. San Francisco, USA: IEEE Press, 2001.
  • 6Lovbjerg M, Rasmussen T K, Krink T. Hybrid Particle Swarm Optimizer with Breeding and Subpopulation[C]//Proceedings of Evolutionary Computation Conference. San Francisco, USA: [s. n.], 2001.
  • 7Ciuprina G, Ioan D, Munteanu I. Use of Intelfigent Particle Swarm Optimization in Electmmagnetics[J]. IEEE Trans. on Magnetics, 2002, 38(2): 1037-1040.
  • 8Clerc M. Discrete Particle Swarm Optimization.Illustrated by the Traveling Salesman Problem[Z]. [2007-04-20]. http://www. mauriceclerc.net.
  • 9Ben-Arieh D,Gutin G,Penn M, et al.Process planning for rotational parts using the generalized traveling salesman problem[].International Journal of Production Research.2003
  • 10Ben-Arieh D,Gutin G,Penn M, et al.Transformations of generalized ATSP into ATSP[].Operations Research Letters.2003

共引文献67

同被引文献27

  • 1邓娟,陈莘萌.一种基于最大相似性的TSP问题求解算法[J].计算机工程,2004,30(17):1-2. 被引量:12
  • 2李随成,刘广.一种改进的TSP问题启发式算法[J].管理工程学报,2005,19(2):114-118. 被引量:11
  • 3杨宁,田蔚风,金志华.一种求解旅行商问题的交叉禁忌搜索(英文)[J].系统仿真学报,2006,18(4):897-899. 被引量:9
  • 4周康,强小利,同小军,许进.求解TSP算法[J].计算机工程与应用,2007,43(29):43-47. 被引量:31
  • 5Lenstra J K, Kan A H G R, Shmoys D B. The traveling salesman problem: a guided tour of combinatorial optimization[ M ]. New York : Wiley, 1985.
  • 6Garey M R, Johnson D S. Computers and Intractability: a guide to the theory of NP - Completeness [ M ]. San Francisco : Freeman W H, 1979.
  • 7Tang Q, Zeng J Y, Li H. A particle swarm optimization algorithm based on genetic selection strategy [ M ]. Springer Berlin Heidelberg:Advances in Neural Networks ISNN 2009,2009.
  • 8Gao S,Zhang Z Y, Cao C G. A novel ant colony genetic hybrid algorithm [ J ]. Journal of Software, 2010,5 ( 11 ) : 1179 - 1186.
  • 9Garey M R,Johnson D S,Tarjan R E. The planar Hamilto- nian circuit problem is NP - complete [ J ]. SIAM Journal on Computing, 1976,5 (4) :704 - 714.
  • 10王剑文,戴光明,谢柏桥,张全元.求解TSP问题算法综述[J].计算机工程与科学,2008,30(2):72-74. 被引量:65

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部