期刊文献+

短码长LT码的快速信度传播解码法

Fast Belief Propagation Decoding of LT Codes with Short Length
下载PDF
导出
摘要 无码率码在广播传输中使用时,信道质量突然下降会导致较大突发性错误并使解码器解码效率降低.为改善此情况,文中提出在短码长LT码解码中采用快速信度传播(FBP)解码法.该方法基于交换启发式原理,对接收到的信号立即进行处理,并快速转化为三角矩阵,不仅提高了解码的成功率而且提高了解码速率.由分析和仿真实验可知:FBP解码法的解码成功率较传统的高斯消元解码法和信度传播解码法有极大的提高;当信源信号长度为128b时,FBP解码法的解码成功率较传统的信度传播解码法有大幅提高;FBP解码法的解码计算复杂度与解码耗时都优于高斯消元解码法. During the usage of rateless codes in broadcast transmission, sudden declination of channel quality may increase the error percentage and decrease the decoding efficiency of decoders. In order to solve these problems, a fast belief propagation (FBP) decoding algorithm based on the swap heuristic method is proposed for the decoding of LT codes with short length. With this algorithm, the received signals are rapidly processed and transformed into a triangular matrix, thus improving the decoding success proportion and the decoding rate. Analytical and simulated results indicate that, as compared with the conventional Gaussian elimination (GE) and belief propagation methods, the proposed FBP decoding algorithm is of the highest decoding success proportion. When the length of the source symbol is 128 b, the decoding success proportion is remarkably greater than that of the conventional belief propagation decoding. Moreover, it is found that the decoding complexity and time consumption of the proposed algorithm are both less than those of the GE method.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第1期47-51,共5页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(60972133) 广东省自然科学基金团队项目(9351064101000003) 广东省能源技术重点实验室项目(2008A060301002)
关键词 无码率码 LT码 信度传播解码法 高斯消元解码法 rateless code LT code belief propagation decoding Gaussian elimination decoding
  • 相关文献

参考文献16

  • 1Ahlswede R, Cai N, Li S Y, et al. Network informationflow [ J ]. IEEE Transactions on Information Theory,2000,46(4) :1204-1216.
  • 2Byers J W,Luby M,Mitzenmacher M,et al. A digital foun-tain approach to reliable distribution of bulk data [C] //Association for Computing Machinery, Special InterestGroup on Data Communications. Vancouver : IEEE, 1998 :56-57.
  • 3Luby M. LT codes [ C] //The 43rd Annual IEEE Sympo-sium on Foundations of Computer Science. Vancouver:IEEE, 2002 :271-280.
  • 4Shokrollahi A. Raptor codes [ J ]. IEEE Transactions onInformation Theory, 2006,52(6) : 2551-2567.
  • 5Mladenov T, Nooshabadi S, Kim K. Efficient incrementalraptor decoding over BEC for 3 GPP MBMS and DVB IP-datacast services [ J ] . IEEE Transactions on Broadcas-ting,2011,57(2) :313-318.
  • 6Tams H,Bush J,Irvine J,et al. Exploiting redundancies toimprove performance of LT decoding [ C] //The 6th An-nual Communication Networks and Services ResearchConference. Ottawa: IEEE,2008 : 198-202.
  • 7Cao R, Yang L Q. Decomposed LT codes for cooperativerelay communications [ J]. IEEE Journal on Selected Areasin Communications,2012,30(2) :407-414.
  • 8Cao R,Yang L Q. Reliable relay-aided underwater acous-tic communications with hybrid DLT codes [ C ] // 2011Military Communications Conference. Baltimore : IEEE,2011:412-417.
  • 9Wu C, Li B. rStream: resilient and optimal peer-to-peerstreaming with rateless codes [ J ]. IEEE Transactions onParallel and Distributed Systems, 2008 ,19(1) :77-92.
  • 10Yang K, Wang J S. Unequal error protection for strea-ming media based on rateless codes [ J]. IEEE Transac-tions on Computers,2012,61 (5) :666-675.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部