期刊文献+

基于迭代支持检测的分布式压缩频谱感知算法 被引量:1

Distributed Compressive Spectrum Sensing Algorithm Based on Iterative Support Detection
下载PDF
导出
摘要 在宽带认知无线电网络中,为了解决频谱感知所面临的诸如高采样速率、信道衰落以及认知无线电用户硬件资源受限等技术挑战,提出一种基于迭代支持检测的分布式压缩频谱感知算法.通过一跳通信的方式,认知无线电用户能够将各自的检测信息扩散到整个网络,并得到全局一致的支持集;同时,认知无线电用户进行本地稀疏信号重构时,利用一致的支持集信息能够保证不同用户的估计结果具有联合稀疏特性,从而得到更为准确的频谱检测结果.仿真结果表明,文中的分布式频谱感知算法能够以低于奈奎斯特准则的采样速率有效地实现频谱检测,并且在不需要融合中心的前提下获得近似最佳的检测性能. In wideband cognitive radio (CR) networks, high sampling rate, wireless fading channels and limited hardware resources all impact the spectrum sensing. In this paper, a distributed compressive spectrum sensing algorithm based on the iterative support detection is proposed, in which CRs spread their detection information in the whole network through the one-hop communication and the global consensus is achieved on the support set. Then, through a shared support set, the joint sparsity is utilized by CRs during the local sparse signal reconstruction, thus realizing more accurate spectrum detection. Simulation results show that the proposed algorithm helps to achieve effective spectrum detection at a sub-Nyquist sampling rate and possesses near-optimal detection performance in the absence of a fusion center.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第1期64-69,共6页 Journal of South China University of Technology(Natural Science Edition)
基金 国家科技重大专项资助项目(2010ZX03005-003)
关键词 认知无线电 压缩感知 支持检测 协作频谱检测 cognitive radio compressive sensing support detection collaborative spectrum detection
  • 相关文献

参考文献16

  • 1Haykin S. Cognitive radio : brain-empowered wireless com-munications ,2005,23 (2) :201-220.
  • 2Liang Ying-Chang,Chen Kwang-Cheng,Li Geoffrey Ye,etal. Cognitive radio networking and communications: anoverview [J]. IEEE Transactions on Vehicular Technolo-gy ,2011,60(7) :3386-3407.
  • 3Yucek T, Arslan H. A survey of spectrum sensing algo-rithms for cognitive radio applications [ J]. IEEE Commu-nications Surveys & Tutorials ,2009,11(1) :116-130.
  • 4Tian Zhi, Giannakis G B. Compressed sensing for wide-band cognitive radios [ C ] // Proceedings of 2007 IEEEInternational Conference on Acoustics, Speech,and SignalProcessing. Honolulu : IEEE,2007 : 1357 -1360.
  • 5Candes E J,Romberg J,Tao T. Robust uncertainty princi-ples :exact signal reconstruction from highly incompletefrequency information [ J]. IEEE Transactions on Informa-tion Theory,2006,52(2) :489-509.
  • 6Davenport M A,Boufounos P T,Wakin M B,et al. Signalprocessing with compressive measurements [ J ]. IEEEJournal of Selected Topics in Signal Processing,2010, 4(2):445-460.
  • 7Donoho D L. Compressed sensing [ J]. IEEE Transactionson Information Theory,2006,52(4) : 1289-1306.
  • 8Salami G, Durowoju O, Attar A, et al. A comparison be-tween the centralized and distributed approaches for spec-trum management [ J ]. IEEE Communications Surveys &Tutorials,2011,13(2) :274-290.
  • 9Meng Jia, Yin Wo-Tao, Li Hu-Sheng, et al. Collaborativespectrum sensing from sparse observations using matrixcompletion for cognitive radio networks [ C ] // Procee-dings of 2010 IEEE International Conference on Acoustics,Speech, and Signal Processing. Dallas : IEEE, 2010 : 3114-3117.
  • 10Wang Ying,Pandharipande A,Polo Y L,et al. Distribu-ted compressive wide-band spectrum sensing [C] // Pro-ceedings of 2009 Information Theory and ApplicationsWorkshop. San Diego : IEEE,2009 ; 178-183.

同被引文献1

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部