期刊文献+

基于色度分割与图割算法的视差估计算法 被引量:2

Disparity Estimation Algorithm Based on Color Segmentation and Graph Cut Algorithm
下载PDF
导出
摘要 为提高视差估计的准确度,提出了一种基于色度分割和图割算法的视差估计算法.该算法采用均值漂移算法对当前图像进行色度分割,并对每个色度分割区域的像素集合分别用图割算法在参考图像中进行像素匹配,进而估计出当前图像的视差.与传统的全局优化算法不同,文中提出的视差估计算法将每个色度分割区域作为整体分别进行全局优化,因而可以提高物体边缘的视差估计准确度.实验结果表明,该算法的视差估计结果更加准确. In order to improve the accuracy of disparity estimation, an algorithm based on color segmentation and graph cut algorithm is proposed. In this algorithm, the current image is segmented into several color areas by employing the mean shift algorithm, and the graph cut is implemented on the pixel set of each color area to allocate disparities for the pixels in the color area. Unlike the traditional global optimization algorithm, the proposed algo- rithm takes the pixel set of a color area rather than the whole image as an entirety to perform the global optimization, thus improving the disparity accuracy of object boundaries. Experimental results demonstrate that the proposed algorithm is more effective than the traditional one.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第2期12-18,共7页 Journal of South China University of Technology(Natural Science Edition)
基金 国家"973"计划项目(2009CB320905 2010CB735906) 国家自然科学基金资助项目(61201211) 教育部博士点基金资助项目(20120131120032) 山东省优秀中青年科学家奖励基金资助项目(BS2012DX021) 中国博士后科学基金特别资助项目(2012T50629) 中国博士后科学基金面上项目(2011M501131 2011M501092) 山东省博士后创新项目专项资金资助项目(201203053) 山东大学自主创新基金资助项目(2010JC007 2011GN061)
关键词 图割 色度分割 全局优化 视差估计 均值漂移 graph cut color segmentation global optimization disparity estimation mean shift
  • 相关文献

参考文献21

  • 1Kawakita M. Axi-vision camera: real time depth mapping camera [EB/OL]. (2007-10-26) [2011-05-25]. http:// wgll. sc29. org/mpeg/does/82_Shenzhen/eontrib/m14949.
  • 2Scharstein D,Szeliski R,Zabih R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms [ C ] // Proceedings of IEEE Workshop on Stereo and Multi-Baseline Vision 2001. Hawaii : IEEE,2001 : 131- 140.
  • 3刘晓仙,常义林,杨海涛,元辉.任意视点电视系统中深度数据的自适应非均匀量化方法[J].西安交通大学学报,2010,44(2):82-87. 被引量:3
  • 4Shi C,Wang G, Pei X, et al. Stereo matching using local plane fitting in confidence-based support window [ J ]. IEICE Transactions on Information and Systems, 2012, E95-D(2) :699-702.
  • 5Gu Z,Su X,Liu Y,et al. Local stereo matching with adaptive support-weight,rank transform and disparity calibration [ J ]. Pattern Recognition Letters, 2008,29 ( 9 ) : 1230-1235.
  • 6Boykov Y, Veksler O, Zabih R. Fast approximate energy minimization via graph cuts [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence ,2001,23 ( 11 ) : 1222-1239.
  • 7Roozgard A, Bargizar N, Cheng S, et al. Dense image registration using sparse coding and belief propagation [ C ] // Proceedings of the 5th International Conference on Signal Processing and Communication Systems. Hawaii: IEEE, 2011:1-5.
  • 8Wang Z, Zheng Z. A region based stereo matching algorithm using cooperative optimization [ C ] //Proceedings of IEEE Conference on Computer Vision and Pattern Recognition 2008. Anchorage : IEEE, 2008 : 1 -8.
  • 9Gales G, Crouzil A, Chambon S. A region-based randomized voting scheme for stereo matching [ C ] //Proceedings of the 6th International Symposium on Visual Computing. Las Vegas : Springer-Verlag, 2010 : 182-191.
  • 10元辉,常义林,刘晓仙,刘河潮,卢朝阳.保持空间准确度与时间一致性的深度估计算法[J].北京邮电大学学报,2010,33(4):26-29. 被引量:4

二级参考文献21

  • 1Moving Picture Experts Group. Call for comments on 3DAV [EB/OL]. (2003-10-24) [2008-06-15]. http: // wg11. sc29. org/mpeg/docs/66Brisbane/wgll/ w6051, zip.
  • 2Moving Picture Experts Group. Preliminary FTV model and requirements[EB/OL]. (2007 - 07- 07) [2008-06-15]. http://wg11. sc29. org/mpeg/docs/81 Lausanne/wg11/w9168. zip.
  • 3MASAYUKI T, TOSHIAKI F. Proposal on EE for FTV [EB/OL]. (2007-06-27)[-2008-06-15]. http://wg11. sc29. org/mpeg/docs/81_Lausanne/contrib/ m14647, zip.
  • 4FEHN C. Depth-image-based rendering (DIBR): the compression and transmission for a new approach on 3DTV [C]//Proceedings of Stereoscopic Displays and Virtual Reality Systems XI. Bellingham, WA, USA: SPIE, 2004: 93-104.
  • 5IDDAN G J, YAHAV G, 3D imaging in the studio [C]//Proceedings of Videometrics and Optical Methods for 3D Shape Measurements. Bellingham, WA, USA: SPIE, 2001:48-55.
  • 6BLEYER M, GELAUTZ M. Graph-cut-based stereo matching using image segmentation with symmetrical treatment of occlusions[J]. Signal Processing: Image Communication, 2007, 22(2): 127-143.
  • 7INCE S, MARTINIAN E, YEA S, et al. Depth estimation for view synthesis in multiview video coding [C]. // Proceedings of IEEE 3DTV Conference. Piscat-away, NJ, USA.. IEEE, 2007:1-4.
  • 8LEE S B, OH K J, HO Y S. Segment based multi- view depth map estimation using belief propagation from dense multi-view video [C]//Proceedings of IEEE 3DTV Conference. Piscataway, NJ, USA: IEEE, 2008:193-196.
  • 9MASAYUKI T, TOSHIAKI F, KAZUYOSHI S. Multi-view depth map of Rena and Akko & Kayo [EB/OL]. (2007-10-17)[2008-06-15]. http://wg11. sc29. org/mpeg/docs/82 Shenzhen/contrib/m14888. zip.
  • 10MASAYUKI T, TOSHIAKI F, KAZUYOSHI S. Improvement of depth map estimation and view syn thesis [EB/OL]. (2008-01-09)[2008-06-15]. http:// wg11. sc29. org/mpeg/docs/83 Antalya/contrib/ m15090, zip.

共引文献5

同被引文献33

  • 1Hartley R,Zisserman A.计算机视觉中的多视图几何[M].韦穗,杨尚骏,译.合肥:安徽大学出版社,2002.
  • 2Gargallo P,Sturm P F. Bayesian 3D modeling from images u-sing multiple depth maps [ C ]//Proc of CVPR. [ s. 1. ] : [ s. n. ] ,2005:885-891.
  • 3Viswannathan L, Ingolla E. Dynamics ofattention in depth:evi dence from multi-element tracking [ J] . Perception, 2002,31 1415-1437.
  • 4Park S K, Kim M $, Lee C W. Mobile robot navigation based on direct depth and color-based environment modeling[ C ]// Proc of IEEE international conference on robotics and automa- tion. [ s. 1. ] : IEEE ,2004:4253-4258.
  • 5Khoshelham K. Accuracy analysis of Kinect depth data[ C ]// Proc of ISPRS. Is. 1. ] :[s. n. ] ,2011.
  • 6Collins R T. A space-sweep approach to true multi-image matching[ C ]//Proc of CVPR. San Francisco, CA: IEEE, 1996:358-363.
  • 7Shi Chenbo, Wang Guijin, Pei Xiaokang, et al. Stereo matching using local plane fitting in confidence-based support window [J ]. IEEE Transactions on Information and Systems, 2012, E95-D(2) :699-702.
  • 8Rooagard A, Bargizar N, Cheng S, et al. Dense image registra- tion using sparse coding and belief propagation [ C ]//Proceed- ings of the 5th international conference on signal processing and communication systems. Hawaii : IEEE,2011 : 1-5.
  • 9Boykov Y,Veksler O,Zabih R. Fast approximate energy mini- mization via graph cuts [ J ]. IEEE Transactions on Pattern A- nalysis and Machine Intelligence ,2001,23 ( 11 ) : 1222-1239.
  • 10Kolmogorov V, Zabih R. What energy functions can be mini- mized via graph cuts? [ J ]. IEEE Transactions on Pattern A- nalysis and Machine Intelligence,2004,26 (2) : 147-159.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部