期刊文献+

复合平面曲线形状公差、方向公差变换算法 被引量:1

Transformation algorithm between the size tolerances and the form tolerances or orientation tolerances on the plane compound contour
下载PDF
导出
摘要 根据公差原则的基本思想,以误差控制功能的等效性和公差带边界曲线的连续性为准则,建立了尺寸公差与形状公差及方向公差的变换算法.探讨了线段非圆弧、非直线奇异偏差在算法中的补偿办法,从而为复合平面曲线坐标值测量数据的处理奠定了理论基础. According to the tolerance principle, by means of the equivalent criterion of the controlling function and the continuity of the tolerance margin, the transformation algorithm between the size tolerances and the form tolerances or orientation tolerances on the contour is advanced. And the modification method is provided for the algorithm in order to compensate the shape deviation from an arc or a straight line Therefore the mathematical basis is established for data processing of the coordinate values measured of the plane compound contour.
出处 《东北师大学报(自然科学版)》 CAS CSCD 北大核心 2013年第1期71-74,共4页 Journal of Northeast Normal University(Natural Science Edition)
基金 吉林省科技发展计划项目(20090202)
关键词 复合平面曲线 形状公差 变换算法 plane compound contour form tolerance transformation algorithm
  • 相关文献

参考文献1

二级参考文献15

  • 1高海音,李晓月,林晓宁,蒋达清.二阶奇异非线性微分方程周期边值问题解的存在性和多重性[J].吉林大学学报(理学版),2005,43(4):411-416. 被引量:9
  • 2GUO Yan-ping,TIAN Ji-wei.Positive Solutions of m-Point Boundary Value Problems for Higher Order Ordinary Differential Equations[J].Nonlinear Analysis,2007,66(7):1573-1586.
  • 3Eloe P W,Henderson J.Postive Solutions for Higher Order Differential Equations[J].Electronic Journal of Differential Equations,1995(3):1-8.
  • 4JIANG Da-qing.Multiple Positive to Singular Boundary Value Problems for Superlinear Higher Order ODEs[J].Computers and Mathematics with Applications,1997,40:207-215.
  • 5Agarwal R P,O'Regan D.Existence Theory for Single and Multiple Solutions to Singular Positone Boundary Value Problems[J].J Differential Equations,2001,175(2):393-414.
  • 6Agarwal P R,WONG Fu-hsiang.Existence of Positive Solutions of Boundary Value Problems for Higher Order Difference Equations[J].Appl Math Letters,1997,82:299-317.
  • 7DU Zeng-ji,XUE Chun-yan,GE Wei-gao.Triple Solutions for a Higher-order Difference Equation[J].Journal of Inequalities in Pure and Applied Mathematics,2005,6(1):1-11.
  • 8Wong P J Y,Agarwal P R.On the Existence of Solutions of Single Boundary Value Problems for Higher Order Difference Equations[J].Nonlinear Anal,1997,28(2):277-287.
  • 9LIN Xiao-ning,JIANG Da-qing,LI Xiao-yue.Existence and Uniqueness of Solutions for Singular Fourth-order Boundary Value Problems[J].Journal of Computational and Applied Mathematics,2006,196(1):155-161.
  • 10YUAN Cheng-jun,JIANG Da-qing,ZHANG You.Existence and Uniqueness of Solutions for Singular Higher Order Continuous and Discrete Boundary Value Problems[J/OL].Boundary Value Problems,2008,doi:10.1155/2008/123823.

共引文献4

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部